113.1命题与证明教学目标【知识与能力】1.理解逆命题的概念,能够判断命题的真假.2.会把命题改写成“如果……那么……”的形式.3.了解逆定理及证明的概念,会对一个真命题进行证明.【过程与方法】1.感受几何中推理的严谨性,掌握推理的方法.2.通过对几何问题的演绎推理,体会证明的必要性,培养学生的逻辑推理能力.【情感态度价值观】通过积极参与,获取正确的数学推理方法,理解数学的严谨性,并培养与他人合作的意识.教学重难点【教学重点】1.让学生弄清命题的条件和结论,熟悉命题的形式.2.理解逆定理和证明的概念,能进行简单的证明.【教学难点】理解证明的必要性.课前准备多媒体课件教学过程一、新课导入:导入一:情境:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮:“哈!这个黑客终于被逮住了.”小刚:“是的,现在网络广泛应用于我们的生活中,给我们带来了方便,但…”.坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着.“这个黑客是小偷吗?”“可能是喜欢穿黑衣服的贼.”你听完这节片段的故事,有何想法?同学们各抒己见,老师给予同学的各种回答评价后,发表自己的看法:在日常生活中,我们会遇到许多概念,假如不对这些概念下定义,别人就无法理解这些概念的含义,以致无法正常地进行交流.同样,在数学学习中,要进行严格的论证,也必须首先对所涉及的概念下定义.本节我们就一起学习命题与证明.导入二:在电影《流浪者》中,法官和流浪者有这样一段对话,法官说:“贼的儿子永远是贼,因为你是贼的儿子,所以永远是贼.”同学们,法官这个推理对吗?显然是错误的,你知道这个荒谬的结论错在哪里吗?学完本节课“命题与证明”你就会明白了.[设计意图]通过风趣幽默的对话,让学生感知证明的重要性,从而激发学生的求知欲2望,能够更好地投入到本节课的学习之中,为学习本节课的知识做好铺垫.导入三:师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”“三条边相等的三角形是等边三角形”等.根据我们已学过的图形的特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等.2.两直线平行,同位角相等.3.同旁内角相等,两直线平行.4.平行四边形的四条边相等.5.直角都相等.[设计意图]通过对以前学过知识的掌握能够判断一个命题的真假,初步感知真命题和假命题,从而自然地引入新知.二、新知构建:活动一:真假命题与互逆命题思路一【课件1】观察下面两个命题:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,...