11.1反比例函数教学目标1.使学生理解并掌握反比例函数的概念。2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。教学重难点【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式。【教学难点】理解反比例函数的概念。课前准备无教学过程一、创设情景探究问题情境1:随着速度的变化,全程所用时间发生怎样的变化?当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。这一情境为后面学习反比例函数概念作铺垫。情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:(3)速度v是时间t的函数吗?为什么?情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化v/(km/h)608090100120t/h2而变化;(4)实数m与n的积为-200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数二、例题教学例1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y=;(2)y=;(3)y=-;(4)y=-3;(5)y=;(6)y=+2;(7)y=.例2:在函数y=-1,y=,y=x-1,y=中,y是x的反比例函数的有个.[说明]这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式.还有y=-1通分为y=,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=可说成(y+1...