JournalofJilinUniversitCInformationScienceEditionMay20232023年5月No.3Vol.41第41卷第3期吉林大学(信息科学版)文章编号:1671-5896(2023)03-0450-09基于改进ShuffleNetV2网络的岩石图像识别袁硕,刘玉敏²,安志伟',王硕昌",魏海军1(1.东北石油大学电气信息工程学院,黑龙江大庆163318;2.重庆科技学院电气工程学院,重庆401331)摘要:由于基于传统深度学习的岩石图像识别算法模型比较繁琐,而且应用于移动终端等需要一定的计算能力,因此很难实现对岩石类型的实时准确判别。为此,以ShuffleNetV2网络为基础,插入通道连接注意力机制ECA(EfficientChannelAttention)模块,使用Mish激活函数代替ReLU激活函数并引人轻量级网络部件中的深度可分离卷积。将该方法用于岩石图像识别,实验结果表明,改进后的算法结构简单,同时具有轻量化的特点,其识别精度达到94.74%,可在移动终端等有限资源环境下应用。关键词:岩石图像;有效通道注意力机制;Mish激活函数;ShuffleNet网络中图分类号:TP312文献标志码:ARockImageRecognitionBasedonImprovedShuffleNetV2NetworkYUANShuo',LIUYumin’,ANZhiwei',WANGShuochang',WEIHaijun'(1.SchoolofElectricalandInformationEngineering,NortheastPetroleumUniversity,Daqing163318,China;2.SchoolofElectricalEngineering,ChongqingUniversityofScienceandTechnology,Chongqing401331,China)Abstract:Therockimagerecognitionalgorithmmodelbasedontraditionaldeeplearningiscumbersomeandrequirescertaincomputingpowerwhenitisappliedtomobileterminals,soitisdifficulttorealizereal-timeandaccurateidentificationofrocktypes.BasedontheShuffleNetV2network,weinserttheECA(EfficientChannelAttention)moduleofthechannelconnectionattentionmechanism,usetheMishactivationfunctiontoreplacetheReLUactivationfunction,andintroducethedepthwiseseparableconvolutioninthelightweightnetworkcomponents.Experimentsareperformedonrockimageswiththismethod.Experimentsshowthattherecognitionaccuracyofthealgorithmreaches94.74%.Theimprovedalgorithmstructureisnotcomplexandmaintainsthecharacteristicsoflightweight,whichlaysafoundationforitsapplicationinlimitedresourceenvironmentssuchasmobileterminals.Keywords:rockimage;efficientchannelattention(ECA);Mishactivationfunction...