StatisticsandApplication统计学与应用,2023,12(4),1020-1033PublishedOnlineAugust2023inHans.https://www.hanspub.org/journal/sahttps://doi.org/10.12677/sa.2023.124105文章引用:廖俊林.基于干预SARIMA模型对疫情后民航客运量的预测[J].统计学与应用,2023,12(4):1020-1033.DOI:10.12677/sa.2023.124105基于干预SARIMA模型对疫情后民航客运量的预测廖俊林华南师范大学数学科学学院,广东广州收稿日期:2023年7月19日;录用日期:2023年8月9日;发布日期:2023年8月22日摘要民航客运量不仅是交通运输部门确定合理交通设施规模的基础,同时也是保障机场设施高效率利用的前提。因此,对疫情后民航客运量展开科学预测显得尤为重要。针对现阶段对客运量预测中未能定量考虑到新冠疫情对客运量影响的研究缺口,本文在建立SARIMA(1,1,1)×(0,1,1)12模型对未发生疫情下我国民航客运量展开预测的基础上,运用干预分析方法定量衡量新冠疫情对民航客运量的影响,进而对疫情后民航客运量展开预测。结果表明,相比于单一SARIMA模型,干预SARIMA模型对疫情后民航客运量短期预测效果表现良好,后续可采用类似干预分析方法将经济状况、政策变化、航空公司策略等事件考虑进来,以更全面分析和预测民航客运量的变化。关键词民航客运量预测,疫情干预分析,SARIMA模型PredictionofCivilAviationPassengerTrafficaftertheEpidemicBasedontheInterventionSARIMAModelJunlinLiaoSchoolofMathematicalSciences,SouthChinaNormalUniversity,GuangzhouGuangdongReceived:Jul.19th,2023;accepted:Aug.9th,2023;published:Aug.22nd,2023AbstractCivilaviationpassengertrafficisnotonlythebasisforthetransportationsectortodeterminethe廖俊林DOI:10.12677/sa.2023.1241051021统计学与应用reasonablescaleoftransportationfacilities,butalsoaprerequisitetoensuretheefficientuseofairportfacilities.Therefore,itisparticularlyimportanttomakescientificforecastsofcivilavia-tionpassengertrafficaftertheepidemic.BasedontheSARIMA(1,1,1)×(0,1,1)12model,thispaperusesinterventionanalysistoquantitativelymeasuretheimpactofthenewepidemiconChina’scivilaviationpassengertraffic,andthenforecastthepost-epidemiccivilaviationpassengertraffic,inordertoaddressthegapthatthecurrentpassengertrafficforecastdoesnotquantitativelytakeintoaccounttheimpactof...