期末考试模拟试卷(1)(满分100分,考试时间120分钟)一、单项选择题(本题8个小题,每题3分,共24分)1.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1B.1C.2a﹣3D.3﹣2a【答案】B【解析】首先判断出a﹣2<0,1﹣a<0,进而利用绝对值以及二次根式的性质化简求出即可. 当1<a<2时,∴a﹣2<0,1﹣a<0,∴+|1﹣a|=2﹣a+a﹣1=1.2.(2019•山东聊城)下列各式不成立的是()A.﹣=B.=2C.=+=5D.=﹣【答案】C.【解析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.﹣=3﹣=,A选项成立,不符合题意;==2,B选项成立,不符合题意;==,C选项不成立,符合题意;==﹣,D选项成立,不符合题意。3.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72B.24C.48D.96【答案】C【解析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积. 四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD, DH⊥AB,∴∠BHD=90°,∴BD=2OH, OH=4,∴BD=8, OA=6,∴AC=12,∴菱形ABCD的面积¿12AC⋅BD=12×12×8=48.4.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.1013√13B.913√13C.813√13D.713√13【答案】D【解析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.由勾股定理得:AC¿√22+32=√13, S△ABC=3×3−12×1×2−12×1×3−12×2×3=¿3.5,∴12AC⋅BD=72,∴√13⋅BD=7,∴BD¿7√13135.(2020•黑龙江)一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6B.3.8或3.2C.3.6或3.4D.3.6或3.2【答案】C【解析】先根据从小到大排列的这组数据且x为正整数、有唯一众数4得出x的值,再利用算术平均数的定义求解可得. 从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,∴x=2或x=1,当x=2时,这组数据的平均数为2+3+4+4+55=¿3.6;当x=1时,这组数据的平均数为1+3+4+4+55=¿3.4;即这组数据的平均数为3.4或3.66.(2019广西桂林)如图,四边形的顶点坐标分别为,,,,当过点的直线将四边形分成面积相等的两部分时,直线所表示的函数表达式为A.B....