第六章一次方程(组)及一次不等式(组)第一课时1、用字母x、y、等表示所要求的未知的数量,这些字母称为未知数。含有未知数的等式叫做方程。在方程中,所含的未知数又称为元。知识点:方程中的项、系数、次数等概念(1)项:在方程中,被“+”、“-”,号隔开的每一部分(包括这部分前面的“十”、“-”号在内)称为一项.(2)未知数的系数:在一项中,写在未知数前面的数字或表示已知数的字母叫做未知数的系数.(3)项的次数:在一项中,所有未知数的指数和称为这一项的次数.(4)常数项:不含未知数的项,称为常数项.为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程。一个长方形篮球场的周长为86米,长是宽的2倍少2米,这个篮球场的长与宽分别是多少米?用两种方法列式:方程:设这个篮球场的宽为米,则长为(2-2)米2(2-2+)=86想一想:你能再列一种方程吗?你还能用列式计算吗?根据下列条件列出方程:(1)某数比它的45大516(2)某数比它的2倍小3(3)数a的70%与数b的120%的和是902、如果未知数所取的某个值能使方程左右两边的值相等看,那么这个未知数的值叫做方程的解注意:(1)方程的解一定能使方程左右两边的值相等(2)方程的解和解方程是两个不同的概念,它们一个是求得的结果,一个是变形的过程,要区别开,方程的解中的“解”是名词,解方程概念中“解”是一个动词判断一个数是否是方程的解(2+3=9)(=3)方法:检验:将=3代入原方程左边=2×3+3=9右边=9 左边=右边∴=3是原方程的解3、只含有一个未知数且未知数的次数是一次的方程叫做一元一次方程知识点:(1)概念:在一个方程中,只含有一个未知数,并且未知数的次数是一次的方程叫一元一次方程。如:x+7=7−x(2)一元一次方程的最简形式:ax=b(a≠0)(3)一元一次方程的标准形式:ax+b=0(a≠0)(4)注意:理解一元一次方程的概念应把握:(5)是一个方程;(6)只含有一个未知数(7)未知数的次数是1(8)化简后未知数的系数不能为0(9)分母不能含有未知数例题.有以下式子:(1)x=0(2)3+2=5(3)1x=4(4)x2=9;(5)2z=3z(6)3−4x(7)2(z+1)=2(8)z+2y=0,其中一元一次方程的个数是().A.2B.3C.4D.54、等式性质1:等式两边同时加上(或减去)同一个数或一个含有字母的式子,说得结果仍是等式。等式性质2:等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果仍是等式。知识点:利用等式的基本性质解一元一次方程1.具体步骤如下:(1)利用等式的性质解...