第43卷第1期2023年2月飞机设计AIRCRAFTDESIGNVol.43No.1Feb.2023收稿日期:2022-03-20;修订日期:2022-12-05作者简介:谢育星(1997—),女,硕士研究生引用格式:谢育星,陆屹,管聪,等.协同空战与多智能体强化学习下的关键问题[J].飞机设计,2023,43(1):6-10.XIEYuxing,LUYi,GUANCong,etal.KeyProblemsinCoordinatedAirCombatandMulti-agentReinforcementLearning[J].AircraftDesign,2023,43(1):6-10.文章编号:1673-4599(2023)01-0006-05doi:10.19555/j.cnki.1673-4599.2023.01.002协同空战与多智能体强化学习下的关键问题谢育星,陆屹,管聪,纪德东(沈阳飞机设计研究所,辽宁沈阳110035)摘要:自从协同作战的概念提出后,各军事强国在协同空战领域均取得了重大进展,协同成为提升作战能力的倍增器。近数十年来,作为解决序列问题的现代智能方法,强化学习在各领域高速发展。然而,面对高维变量问题时,传统的单智能体强化学习往往表现不佳,多智能体强化学习算法为解决复杂多维问题提出新的可能。通过对多智能体强化学习算法原理、训练范式与协同空战的适应性进行分析,提出了协同空战与多智能体强化学习的未来发展方向,为更好地把多智能体强化学习应用于协同空战提供思路。关键词:协同空战;多智能体强化学习;训练范式;集中式训练分布式执行(CTDE)中图分类号:V11文献标识码:AKeyProblemsinCoordinatedAirCombatandMulti-agentReinforcementLearningXIEYuxing,LUYi,GUANCong,JIDedong(ShenyangAircraftDesign&ResearchInstitute,Shenyang110035,China)Abstract:Sincetheconceptofcooperativeoperationwasputforward,allmilitarypowershavemadegreatprogressinthefieldofcooperativeaircombat,andcoordinationhasbecomeamultipliertoen-hancecombatcapability.Inrecentdecades,asamodernintelligentmethodtosolvesequenceprob-lems,reinforcementlearninghasdevelopedrapidlyinvariousfields.However,inthefaceofhigh-di-mensionalvariableproblems,thetraditionalsingle-agentreinforcementlearningoftenperformspoor-ly.Multi-agentreinforcementlearningalgorithmsprovidenewpossibilitiesforsolvingcomplexmulti-dimensionalproblems.Byanalyzingtheadaptabilityofmulti-agentreinforcementlearningalgorithmprinciple,trainingparadigmandcooperativeaircombat,thefuturedevelopment...