基于视觉多头注意力与跨层白化的水下图像增强网络丛晓峰1桂杰1,2贺磊2章军3摘要由于水下的光吸收现象、散射现象与小粒子的存在,水下图像存在色彩失衡与细节失真问题.为此,文中设计基于视觉多头自注意力与跨层白化的水下图像增强网络.采用层级式的架构,由编码路径进行特征提取并由解码路径进行图像重建,编码与解码路径的核心组件是视觉多头自注意力模块.对浅层特征进行实例白化处理,并将实例白化后的浅层特征通过跨层连接嵌入到深层特征中作为跨层白化路径.内容损失与结构损失用于网络的训练过程.在基准水下图像数据集上进行对比实验,定量与视觉结果表明视觉多头自注意力与实例白化对水下增强任务是有效的.关键词水下成像,视觉注意力,跨层白化,质量复原引用格式丛晓峰,桂杰,贺磊,章军.基于视觉多头注意力与跨层白化的水下图像增强网络.模式识别与人工智能,2023,36(5):407-418.DOI10.16451/j.cnki.issn1003⁃6059.202305002中图法分类号TP391UnderwaterImageEnhancementNetworkBasedonVisualMulti⁃headAttentionandSkip⁃LayerWhiteningCONGXiaofeng1,GUIJie1,2,HELei2,ZHANGJun3ABSTRACTDuetothephenomenaoflightabsorptionandscattering,aswellasthepresenceofsmallparticlesinunderwaterenvironment,underwaterimagessufferfromtheproblemsofcolorimbalanceanddetaildistortion.Toaddressthisissue,anunderwaterimageenhancementnetworkbasedonvisualmulti⁃headattentionandskip⁃layerwhiteningisproposedinthispaper.Ahierarchicalarchitectureisadopted,featureextractionisperformedbytheencodingpathandimagereconstructioniscarriedoutbyt...