测绘通报2023年第6期引文格式:张炎,刘立龙,何广焕,等.改进哈里斯鹰优化算法在匹配地面点云孔洞修补中的应用[J].测绘通报,2023(6):82-87.DOI:10.13474/j.cnki.11-2246.2023.0172.改进哈里斯鹰优化算法在匹配地面点云孔洞修补中的应用张炎1,2,刘立龙1,2,何广焕3,徐勇1,2,蒙金龙3(1.桂林理工大学测绘地理信息学院,广西桂林541006;2.广西空间信息与测绘重点实验室,广西桂林541006;3.广西建设职业技术学院,广西南宁530007)摘要:针对无人机匹配点云经地面点滤波后存在较多孔洞的问题,本文提出了利用改进哈里斯鹰算法优化最小二乘支持向量机修补地面点云孔洞。首先,利用八叉树结构法对滤波后的点云数据进行地面特征点提取;然后,采用非线性收敛因子和自适应逃脱概率策略对哈里斯鹰算法进行改进,并将其用于最小二乘支持向量机孔洞修补模型的参数优化。试验结果表明,与常规最小二乘支持向量机相比,组合模型的孔洞修补精度提高了34.3%,其稳定性也得到增强,具备一定的时效性和现实性。关键词:改进哈里斯鹰算法;八叉树结构法;最小二乘支持向量机;点云孔洞修补中图分类号:P237文献标识码:A文章编号:0494-0911(2023)06-0082-06ApplicationofimprovedHarrisHawksoptimizationalgorithminpatchingcloudholesatmatchinggroundpointsZHANGYan1,2,LIULilong1,2,HEGuanghuan3,XUYong1,2,MENGJinlong3(1.CollegeofGeomaticsandGeoinformation,GuilinUniversityofTechnology,Guilin541006,China;2.GuangxiKeyLaboratoryofSpatialInformationandGeomatics,Guilin541006,China;3.GuangxiConstructionVocationalandTechnicalCollege,Nanning530007,China)Abstract:AimingattheproblemthattherewillbemoreholesintheUAVmatchingpointcloudaftergroundpointfiltering,thispaperproposestousetheimprovedHarrisHawksoptimizationalgorithmtooptimizetheleastsquaressupportvectormachinetorepairthegroundpointcloudhole.Firstly,theeight-prongedtreestructuremethodisusedtoextractgroundfeaturepointsfromthefilteredpointclouddata.Secondly,theHarrisEaglealgorithmisimprovedbyusingnonlinearconvergencefactorandadaptiveescapeprobabilitystrategy,anditisusedforparameteroptimizationofholerepairmodelofleastsquaressupportvectormachine.Experimentalresultsshowthatcomparedwiththeconventionalleasts...