文章编号:1005-5630(2023)02-0026-10DOI:10.3969/j.issn.1005-5630.2023.002.004基于注意力机制的水果损伤检测及分类张杰,夏春蕾,张荣福,哈利扎提·居来提,刘怡(上海理工大学光电信息与计算机工程学院,上海200093)摘要:水果作为人们日常必备的食物,其越来越高的消费需求使得行业对自动损伤检测和自动分类的要求日益提高。针对这一需求,近年来水果损伤自动检测成为研究的热门话题。针对现有的深度学习技术,即卷积神经网络在水果的特征提取和分类方面的应用进行了探讨,提出了一种以ResNet34作为主干网络,并在此基础上引入注意力机制SE和CBAM模块的方法来实现水果损伤的检测和基本分类。在fruitfreshandrottenforclassification数据集上完成了该方法的验证。经过与VGG16,GoogLeNet,MobileNetV2等常见网络的比较分析,结果显示改进后的模型分类准确度达到98.8%。通过加入新的苹果数据集,该模型相比原网络ResNet34,在性能方面进一步提升,有效提高了模型的泛化性。该模型提升了水果损伤检测和分类处理的精确性,在实际中,可为复杂的水果图片的多特征分类处理提供借鉴。关键词:深度学习;水果损伤检测;ResNet;注意力机制中图分类号:TP183文献标志码:AFruitdamagedetectionandclassificationbasedonattentionmechanismZHANGJie,XIAChunlei,ZHANGRongfu,HALIZHATIJulaiti,LIUYi(SchoolofOptical-ElectricalandComputerEngineering,UniversityofShanghaiforScienceandTechnology,Shanghai200093,China)Abstract:Forthedailyessentialfoodofpeople,automaticdamagedetectionandautomaticclassificationareessentialfortheincreasingconsumptionoffruit.Inviewofthisdemand,automaticdetectionoffruitdamagehasbecomeahottopicinrecentyears.Inthispaper,theapplicationofconvolutionalneuralnetwork,anexistingdeeplearningtechnology,infruitfeatureextractionandclassificationwasdiscussed.AmethodbasedonResNet34asthebackbonenetworkandtheintroductionofattentionmechanismSEandCBAMmodulewasproposedtorealizethedetectionandbasicclassificationoffruitdamage.Themethodwasverifiedonfruitfreshandrottenforclassificationdataset,andcomparedwithVGG16,GoogLeNet,MobileNetV2andothercommonnetworks.Theaccuracyoffruitdamagedetectionandclassificationisimproved.Theclassificationaccuracyreaches98.8%.Byaddingth...