2023年第36卷第3期ElectronicSci.&Tech./Mar.15,2023https://journal.xidian.edu.cn收稿日期:2022-01-30基金项目:江苏省高校自然科学研究重大项目(20KJA190001)MajorProjectofNaturalScienceResearchinUniversitiesofJiangsu(20KJA190001)作者简介:卢东祥(1979-),男,副教授。研究方向:计算机应用技术、科技成果转化。道路交通网络节点分配优化策略研究进展卢东祥(盐城师范学院,江苏盐城224002)摘要为了进一步提高城市道路交通网络的通行效率,粒子群优化和神经网络等多种智能优化算法受到越来越多的关注。近年来,深度学习技术的普及与应用大幅提升了城市交通网络的节点识别效率,而交通网络的节点调度又扩展了深度学习技术的应用。文中详细分析了交通节点调度所面临的关键问题,归纳并总结了相关网络节点分配的研究现状。在此基础上,深入研讨了城市交通网络节点调度与深度学习的应用前景,并对交通网络节点分配优化策略的未来研究方向进行了展望。关键词交通网络;节点调度;深度学习;机器学习;车联网;智能算法;启发式搜索;协同控制中图分类号TN929.5;U495文献标识码A文章编号1007-7820(2023)03-081-06doi:10.16180/j.cnki.issn1007-7820.2023.03.013ResearchProgressofNodeAssignmentOptimizationStrategyinRoadTrafficNetworkLUDongxiang(YanchengNormalUniversity,Yancheng224002,China)AbstractInordertofurtherimprovethetrafficefficiencyofurbanroadtrafficnetwork,avarietyofintelligentoptimizationalgorithmssuchasparticleswarmoptimizationalgorithmandneuralnetworkalgorithmhaveattractedex-tensiveattention.Recently,thepopularizationandapplicationofdeeplearningtechnologyhasgreatlyimprovedtheefficiencyofnodeidentificationofurbantrafficnetwork,andthenodeschedulingoftrafficnetworkhasexpandedtheapplicationofdeeplearningtechnology.Inthisstudy,thekeyproblemsoftrafficnodeschedulingareanalyzedinde-tail,andtheresearchstatusofrelevantnetworknodeallocationissummarized.Onthisbasis,theproposedstudythoroughlydiscussesandanalyzestheapplicationprospectofnodeschedulinganddeeplearninginurbantransporta-tionnetwork,andprospectsthefutureresearchdirectionofnodeallocationoptimizationstrategyintransportationnet-work.Keywordstransportationnetwork;nodescheduling;dee...