第40卷第3期计算机应用与软件Vol.40No.32023年3月ComputerApplicationsandSoftwareMar.2023基于受限玻尔兹曼机和粗糙集的风速区间概率预测模型于晓要李娜(商丘工学院河南商丘476000)收稿日期:2020-02-25。于晓要,讲师,主研领域:粗糙集理论及其应用。李娜,讲师。摘要针对风速的不确定性、时变和非线性特征,提出一种用于风速预测的基于受限玻尔兹曼机和粗糙集理论的区间概率分布学习(IntervalProbabilityDistributionLearning,IPDL)模型。该模型包含一组区间隐藏变量,利用Gibbs抽样和对比散度来获取风速的概率分布,结合模糊II型推理系统(FuzzyTypeIIInferenceSystem,FT2IS),设计一个有监督回归的实值区间深度置信网络(IntervalDeepBeliefNetwork,IDBN)。算例结果表明,该方法结合了IPDL和FT2IS的鲁棒性,风速预测性能较好。关键词受限玻尔兹曼机粗糙集理论风速预测区间概率分布学习人工神经网络中图分类号TP3TM76文献标志码ADOI:10.3969/j.issn.1000-386x.2023.03.025INTERVALPROBABILITYPREDICTIONMODELFORWINDSPEEDBASEDONRESTRICTEDBOLTZMANNMACHINEANDROUGHSETYuXiaoyaoLiNa(ShangqiuInstituteofTechnology,Shangqiu476000,Henan,China)AbstractInviewoftheuncertainty,time-varyingandnonlinearcharacteristicsofwindspeed,thispaperproposesanintervalprobabilitydistributionlearning(IPDL)modelbasedonrestrictedBoltzmannmachineandroughsettheoryforwindspeedprediction.Themodelcontainedasetofintervalpotentialvariables.ItusedGibbssamplingandcontrastivedivergencetoobtaintheprobabilitydistributionofwindspeed.CombinedwiththefuzzytypeIIinformationsystem(FT2IS),wedesignedanintervaldeepbeliefnetwork(IDBN)withsupervisedregression.TheexampleresultsshowthattheproposedmethodcombinestherobustnessofIPDLandFT2IS,anditswindspeedpredictionperformanceisbetter.KeywordsRestrictedBoltzmannmachineRoughsettheoryWindspeedpredictionIntervalprobabilitydistributionlearningArtificialneuralnetwork0引言近年来,风能作为清洁能源受到了广泛关注,全球风电装机容量逐年增长。风力发电的稳定性和可靠性是需要考虑的关键问题,因此,有必要进行风电预测。由于风电预测依赖于大气气象学和风速,因此提高风速预测的准确性能改善风电预测结果[1]。由于风速数据具有随机性和混沌...