第47卷第4期电网技术Vol.47No.42023年4月PowerSystemTechnologyApr.2023文章编号:1000-3673(2023)04-1540-08中图分类号:TM614文献标志码:A学科代码:470·40基于格拉姆角场与改进的风电功率预测方法张淑清1,杜灵韵1,王册浩1,姜安琦1,徐丽华2(1.教育部智能控制系统与智能装备工程研究中心(燕山大学),河北省秦皇岛市066004;2.国网冀北电力有限公司唐山供电公司,河北省唐山市063000)WindPowerForecastingMethodBasedonGAFandImprovedCNN-ResNetZHANGShuqing1,DULingyun1,WANGCehao1,JIANGAnqi1,XULihua2(1.EngineeringResearchCenterforIntelligentControlSystemandIntelligentEquipment(YanshanUniversity),MinistryofEducation,Qinhuangdao066004,HebeiProvince,China;2.TangshanPowerSupplyCompanyofNorthHebeiElectricPowerCo.,Ltd.,Tangshan063000,HebeiProvince,China)ABSTRACT:Theuncertaintyofwindpowerbringsaboutgreatdifficultiestothepowersystemscheduling,soitisparticularlysignificanttoaccuratelyforecastthewindpowervariations.Undertheinfluenceoftherapiddevelopmentoftheimageprocessinginrecentyears,itispossibletoimprovetheaccuracyofclassificationandcomputationbyencodingthetimeseriesintotwo-dimensionalimages,whichallowstheneuralnetworkstorecognizeandlearnfromthedata"visually".Therefore,awindpowerforecastbasedontheGAFandtheimprovedCNN-ResNetisproposed.Firstly,theGramianAngularFields(GAF)isusedtoconverttheone-dimensionalhistoricalwindpowerdataintotwo-dimensionalimages.Thecorrelationandfeaturesofthetime-seriesareextractedbytheConvolutionalNeuralNetwork(CNN).Secondly,theResidualNeuralNetwork(ResNet)isusedtoextractthefeaturesoftheotherrelevantdatatowindpower,andthedegradationproblemissolvedwhilethenetworkdepthisincreasedtoimprovetheaccuracyofprediction.Then,thetwoneuralnetworksarefusedtoconstructadual-inputneuralnetworkstructure.Finally,thismethodissuccessfullyappliedtothedatasetsoftheMahuangshanNO.1windfarminNingxiaHuiAutonomousRegioninChinaandtheGaliciawindfarminSpain.ComparedwiththeResNet,theCNN-MLP,theGRU,theBP,theLSTMandtheBiLSTMnetworkmodels,theforecastmethodoftheGAFandtheimprovedCNN-ResNetproposedinthispaper...