第46卷第1期2023年2月电子器件ChineseJournalofElectronDevicesVol.46No.1Feb.2023项目来源:云南电网有限责任公司科技项目(059300KK52190006)收稿日期:2021-04-27修改日期:2021-12-21MechanicalFaultDetectionMethodinHighVoltageCircuitBreakersbyUsingHybridFeaturesandIntegratedExtremeLearningMachine*TIANYuan*,HUANGZuyuan,ZHANGHang,SUWenwei,GENGZhenwei,GAOYudou(InformationcenterofYunnanPowerGridCo.,Ltd.,KunmingYunnan650011,China)Abstract:Amechanicalfaultdetectionmethodforhighvoltagecircuitbreakerbasedonhybridfeatureextractionandintegratedextremelearningmachine(IELM)isproposed.Firstly,thevibrationsignalisdecomposedbyusingfullyintegratedadaptivenoiseempiricalmodedecomposition(CEEMDAN)toobtaintheintrinsicmodefunction(IMF).Then,thetime-frequencymatrixisobtainedthroughsub-bandre-constructionofeachorderIMFcomponentcombinedwithHilberttransformandband-passfilter.Thetime-frequencymatrixistransformedintoenergymatrix,thefrequencybandisnormalizedbyusingnormalcumulativedistributionfunction(NCDF),andthetime-frequencyen-tropyandsingularentropyareextractedtoformthemechanicalfaultfeaturevector.Inaddition,afaultclassificationsystemisestablished.TheadvantageofCEEMDANschemecombinedwithband-passfilteringisthatitcaneliminatemodalaliasing,reducetheadditionofaux-iliarynoiseandimprovethedecompositionefficiency.Inaddition,thenormalizedsingularentropyofNCDFhasmorestableperformance.IELMcomposedofmultipleweakclassescansolvetheshortcomingsoftraditionalextremelearningmachines.Experimentalresultsbasedonmeasureddatashowthatmechanicalfaultscanbeeffectivelydetectedbyusingthismethodthroughsmallsamples.Keywords:high-voltagecircuitbreakers;vibrationsignals;empiricalmodedecomposition;time-frequencyentropy;singularentropy;ex-tremelearningmachineEEACC:1210;7220doi:10.3969/j.issn.1005-9490.2023.01.034基于混合特征和集成极限学习机的高压断路器机械故障检测*田园*,黄祖源,张航,苏文伟,耿贞伟,高宇豆(云南电网有限责任公司信息中心,云南昆明650011)摘要:提出了一种基于混合特征提取和集成极限学...