大规模结构网格数据的相关性统计建模轻量化方法杨阳1武昱1汪云海2曹轶1,31(北京应用物理与计算数学研究所北京100094)2(山东大学计算机科学与技术学院山东青岛266237)3(中物院高性能数值模拟软件中心北京100088)(yang1993@mail.ustc.edu.cn)CorrelationStatisticalModelingReductionMethodforLarge-ScaleStructuralGridDataYangYang1,WuYu1,WangYunhai2,andCaoYi1,31(InstituteofAppliedPhysicsandComputationalMathematics,Beijing100094)2(SchoolofComputerScienceandTechnology,ShandongUniversity,Qingdao,Shandong266237)3(CAEPSoftwareCenterforHighPerformanceNumericalSimulation,Beijing100088)AbstractDatavisualanalysisisessentialforlarge-scalenumericalsimulations.Thestoragebottleneckofhigh-performancecomputersmakesitchallengingtoanalyzeandvisualizedatawithoriginalhigh-resolution.Themethodbasedonstatisticalmodelingcansignificantlyreducethedatastoragecost,withthereconstructionuncertaintybeinghigh.Therefore,weproposealarge-scaledatareductionmethodforefficientanalysisandvisualizinglarge-scalemulti-blockvolumedatageneratedbymassivelyparallelscientificsimulations.Thetechnicalcoreofthismethodistoguidethestatisticalmodelingofadjacentdatablocksthroughthestatisticalrepresentationofcorrelationbetweendatablocks.Bydoingso,ourmethodefficientlypreservesthestatisticaldatapropertieswithoutmergingdatablocksstoredindifferentparallelcomputingnodesandrepartitioningthemaccordingtothehomogeneityrequirementsofthevisualization.Comparedwithexsitingmethods,theoriginaldatacanbereconstructedmoreaccuratelybycouplingnumericaldistributioninformation,spatialdistributioninformation,andcorrelationinformation,furtherreducingthevisualuncertainty.Theexperimentaltestsusefivesetsofscientificdatawiththelargestscaleofonebilliongrids.Thequantitativeanalysisresultsshowthatourmethodimprovesthedatareconstructionaccuracybyuptotwoordersofmagnitudeatthesamedatacompressionratiocomparedwiththecurrentstate-of-the-artmethods.Keywordsdatareduction;massivelyparallelscientificsimulation;large-scalemulti-blockvolumedata;correlationstatistica...