改进后的YOLOv5用于跌倒行为检测张振亚,何明艳,王萍(安徽建筑大学电子与信息工程学院,安徽合肥230022)摘要:随着全球人口老龄化不断加剧,由于跌倒致死的比例也随之增加,及时发现跌倒行为对降低死亡风险至关重要。针对现有跌倒检测算法在实际应用场景中出现漏检、准确率低等问题,本文将改进后的YOLOv5目标检测方法用于跌倒行为检测。具体改进措施:将YOLOv5的边界框损失函数GIoU更换为α-IoU;引入卷积块注意力机制模块(CBAM),使网络可以更专注地学习跌倒特征;在特征融合层引入加权双向特征金字塔网络结构(BiFPN)以充分利用不同尺度的特征,从而提高检测精度。实验结果表明,改进的YOLOv5模型对跌倒行为的检测精度mAP达到了98.8%,比改进前提高了4%,满足对实际应用场景下跌倒检测的要求。关键词:计算机视觉;跌倒检测;YOLOv5;α-IoU;加权双向特征金字塔;卷积块注意力机制中图分类号:TP391.4文献标志码:A文章编号:1007-4260(2023)01-0072-07FallBehaviorDetectionBasedonImprovedYOLOv5ZHANGZhenya,HEMingyan,WANGPing(CollegeofElectronicandInformationEngineering,AnhuiJianzhuUniversity,Hefei230022,China)Abstract:Astheglobalpopulationagingcontinuestointensify,theproportionofhumandeathalsoduetofallsisincreas-ing.Timelydetectionoffallsiscrucialtoreducingtheriskofdeath.Aimingattheproblemsofmissingdetectionandlowaccu-racyofexistingfalldetectionalgorithmsinpracticalapplicationscenarios,thispaperappliestheimprovedYOLOv5targetde-tectionmethodtothefallbehaviordetection.ReplacetheboundingboxlossfunctionGIoUofYOLOv5withα-IoU,thecon-volutionalblockattentionmodule(CBAM)isintroduced,sothatthenetworkcanmorefocusonlearningthefeatureoffalling.Inthefeaturefusionlayer,theweightedbidirectionalfeaturepyramidnetworkstructure(BiFPN)isintroducedtomakefulluseofthefeaturesofdifferentscales,soastoimprovethedetectionaccuracy.Theexperimentalresultsshowthatthedetectionaccuracy(mAP)oftheimprovedYOLOv5modelforfallbehaviorreached98.8%,whichis4%higherthanthatbeforeim-provement,andmeetstherequirementsoffalldetectioninpracticalapplicationscenarios.Keyword:computervision;fallbehaviordetection;Yolov5;α-IoU;BiFPN;CBAM世界老年人口正在迅速增长,我国65岁以...