第11卷第1期导航定位学报Vol.11,No.12023年2月JournalofNavigationandPositioningFeb.,2023引文格式:高嵩,宋佳鹏,房穹,等.抗差自适应容积卡尔曼滤波在UWB室内定位中的应用[J].导航定位学报,2023,11(1):142-147.(GAOSong,SONGJiapeng,FANGQiong,etal.ApplicationofadaptivelyrobustcubatureKalmanfilterinUWBindoorlocation[J].JournalofNavigationandPositioning,2023,11(1):142-147.)DOI:10.16547/j.cnki.10-1096.20230121.抗差自适应容积卡尔曼滤波在UWB室内定位中的应用高嵩,宋佳鹏,房穹,张熙为(辽宁工程技术大学测绘与地理科学学院,辽宁阜新123000)摘要:针对超宽带(UWB)测距异常值、传统滤波方法中动力学模型不精准、状态向量误差协方差阵非正定等问题,提出一种基于奇异值分解的抗差自适应容积卡尔曼滤波算法,并将其应用于UWB室内定位中:以标准容积卡尔曼滤波(CKF)算法为基础,利用残差向量构造抗差因子消除观测异常值对定位解的影响;利用自适应因子对整体模型误差进行实时调整和修正以提高滤波精度;同时用奇异值分解代替乔莱斯基(Cholesky)分解以进一步提高滤波的稳定性。实验结果表明,所提算法相比传统的扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)、CKF算法,能够进一步提高UWB系统的定位精度和抗干扰能力,定位最大误差由1.5m降至0.3m,均方根误差小于0.05m。关键词:超宽带(UWB)定位;奇异值分解;容积卡尔曼滤波;测距异常值;系统噪声中图分类号:P228文献标志码:A文章编号:2095-4999(2023)01-0142-06ApplicationofadaptivelyrobustcubatureKalmanfilterinUWBindoorlocationGAOSong,SONGJiapeng,FANGQiong,ZHANGXiwei(SchoolofGeomatics,LiaoningTechnicalUniversity,Fuxin,Liaoning123000,China)Abstract:Aimingattheproblemsofultra-wideband(UWB)rangingoutliers,theinaccuracyofdynamicmodelintraditionalfilteringmethods,andthenon-positivedefinitestatevectorerrorcovariancematrix,arobustadaptivevolumeKalmanfilteralgorithmbasedonsingularvaluedecompositionwasproposedandappliedtoUWBindoorpositioning.BasedonthestandardcubatureKalmanfilter(CKF)algorithm,theresidualvectorisusedtoconstructtherobustfactortoeliminatetheinfluenceoftheobservedoutliersonthepositioningsolution,andtheadaptivefactorisusedtoadjustandcorrecttheoverallmodelerrorinrealtimetoimprovethef...