ElectricalAutomation《电气自动化》2023年第45卷第1期电力系统及其自动化PowerSystem&Automation基于神经网络数据处理的配网实时参数辨识研究焦昊1,王海林2,陈锦铭1,刘伟1(1.国网江苏省电力有限公司电力科学研究院,江苏南京211103;2.国网江苏省电力有限公司,江苏南京210024)摘要:配电网参数的准确性对其优化运行有着重要意义。但近年来配电网结构日益复杂,采用传统理论计算所得配电网参数与实际数值存在着较大误差。同时,实际量测数据存在误差,导致难以准确辨识其参数信息。为此提出一种基于神经网络数据处理的配电网实时参数辨识方法。首先对配电网建立参数辨识方程,然后利用反向传播神经网络对量测数据进行处理,最后对参数进行辨识,采用33节点系统进行测试。结果表明,所提方法能够准确辨识配电网络线路阻抗、变压器阻抗及导纳等参数,为配电网安全可靠运行及后续控制分析提供了基础支撑。关键词:配电网;节点分类;神经网络;数据处理;参数辨识DOI:10.3969/j.issn.1000-3886.2023.01.007[中图分类号]TM744[文献标志码]A[文章编号]1000-3886(2023)01-0026-03ResearchonReal-timeParameterIdentificationofDistributionNetworkBasedonNeuralNetworkDataProcessingJiaoHao1,WangHailin2,ChenJinming1,LiuWei1(1.ElectricPowerResearchInstitute,StateGridJiangsuElectricPowerCo.,Ltd.,NanjingJiangsu211103,China;2.StateGridJiangsuElectricPowerCo.,Ltd.,NanjingJiangsu210024,China)Abstract:Theaccuracyofthedistributionnetworkparametersisofgreatsignificancetoitsoptimizedoperation.However,inrecentyears,thestructuresofthedistributionnetworkshavebecomemoreandmorecomplex.Therearelargeerrorsbetweenthedistributionnetworkparameterscalculatedbytraditionaltheoryandtheactualvalues.Atthesametime,thereareerrorsintheactualmeasureddata,whichmakesitdifficulttoaccuratelyidentifyitsparameterinformation.Forthisreason,areal-timeparameteridentificationmethodofdistributionnetworkbasedonneuralnetworkdataprocessingwasproposed.Firstly,theparameteridentificationequationofdistributionnetworkwasestablished,thenthemeasureddatawereprocessedbybackpropagationneuralnetwork,andfinallytheparameterswerethusidentified.A33-nodesystemwasusedforte...