第36卷第2期2023年2月传感技术学报CHINESEJOURNALOFSENSORSANDACTUATORSVol.36No.2Feb.2023项目来源:教育部“科教融创”职业教育改革创新课题(HBKC217107);黑龙江省教育厅基本科研业务专项(145209804)收稿日期:2022-03-21修改日期:2022-04-25ResearchonSMO-SVMSpeakerRecognitionBasedonPCA-VQFusionDimensionalityReduction*XIQingyun1,3,SUNTongri2,TAOBairui3*,YANGWenbo3,MIAOFengjuan3(1.XingAnLeagueBranch,InnerMongoliaRadioandTelevisionUniversity,XingAnLeague,InnerMongolia137400,China;2.ComputerScienceandInformationEngineering,HeiheUniversity,HeiheHeilongjiang164300,China;3.CollegeofCommunicationsandElectronicsEngineering,QiqiharUniversity,QiqiharHeilongjiang161006,China)Abstract:AimingattheproblemoflowcomputationalefficiencyandinstabilityofthemodelcausedbyhighdimensionoftheoriginalMelFrequencyCepstrumCoefficient(MFCC)characteristicparametersofspeaker’sspeech,thedualproblemofthebasicformofSupportVectorMachine(SVM)issolvedbasedonSequenceMinimumOptimization(SMO)efficientalgorithm,andSMO-SVMspeakerrecognitionalgorithmwithprincipalcomponentanalysis-vectorquantization(PCA-VQ)fusiondimensionalityreductionisdeveloped.TheimprovedalgorithmissimulatedontheMATLABplatform.ThesimulationresultsshowthatafteroptimizingtheMFCCfeatureparametersandreducingthedimensionthroughthePCA-VQfusionalgorithm,theaccuracyofSMO-SVMspeakerrecognitionmodelisimprovedby3.77%andthetrainingtimeissavedby1.24s,whichhasgoodpopularizationandapplicationvalue.Keywords:speakerrecognition;PCA;VQ;SMO;SVMEEACC:6130Edoi:10.3969/j.issn.1004-1699.2023.02.015PCA-VQ融合降维的SMO-SVM说话人识别研究*席青云1,3,孙同日2,陶佰睿3*,杨文博3,苗凤娟3(1.内蒙古广播电视大学兴安盟分校,内蒙古兴安盟137400;2.黑河学院计算机与信息工程学院,黑龙江黑河164300;3.齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161006)摘要:针对说话人语音原始梅尔频率倒谱系数(MFCC)特征参数维数较高造成的模型计算效率低以及不稳定的问题,基于序列最小优化(SMO)高效算法求解支持向量机(SVM)基本型的对偶问题,开展主成分分析-矢量量化((PCA-VQ)...