初中生现代舞蹈教学视频篇一:edu_ecologychuanke109155江西省南昌市2023-2023学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析试卷紧扣教材和说明,从考生熟悉的根底知识入手,多角度、多层次地调查了学生的数学理性思维才能及对数学本质的理解才能,立足根底,先易后难,难“易适中,强调应用,不偏不怪,到达了考根底、考才能、考素养〞的目的。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全“部重要内容,表达了重点知识重点调查〞的原那么。1.回归教材,注重根底试卷遵照了调查根底知识为主体的原那么,尤其是考试说明中的大局部知识点均有涉及,其中应用题与抗战成功73周年为背景,把爱国主义教育渗透到试题当中,使学生感遭到了数学的育才价值,所有这些标题的都回归教材和中学教学实际,操作性强。2.适当设置标题难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性征询题,难度较大,学生不仅要有较强的分析征询题和处理征询题的才能,以及扎实深沉的数学根本功,而且还要掌握必须的数学思想与方法,否那么在有限的时间内,特别难完成。3.规划合理,调查全面,着重数学方法和数学思想的调查在选择题,填空题,解答题和三选一征询题中,试卷均对高中数学中的重点内容进展了反复调查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块征询题。这些征询题都是以知识为载体,立意于才能,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。二、亮点试题分析1.【试卷原题】11.已经明白A,B,C是单位圆上互不一样的三点,且满足ABAC,那么ABAC的最小值为()141B.23C.4D.1A.【调查方向】此题主要调查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。解法较多,属于较难题,得分率较低。【易错点】1.不能正确用OA,OB,OC表示其它向量。2.找不出OB与OA的夹角和OB与OC的夹角的倍数关系。【解题思路】1.把向量用OA,OB,OC表示出来。2.把求最值征询题转化为三角函数的最值求解。22【解析】设单位圆的圆心为O,由ABAC得,(OBOA)(OCOA),由于,因而有,OBOAOCOA那么OAOBOC1ABAC(OBOA)(OCOA)2OBOCOBOAOAOCOAOBOC2OBOA1设OB与OA的夹角为,那么OB与OC的夹角为211因而,ABACcos22cos12(cos)2221即,ABAC的最小值为,应选B。2【举一反三】【类似较难试题】【2023高考天津,理14】在等腰梯形ABCD中,已经明白AB//DC,AB2,BC1,AB...