高中生物竞赛培优教案植物(一)

第一篇:高中生物竞赛培优教案植物(一)
植物培优教案(一)
生物界的划分 在自然界中,生物是多种多样的,植物只是自然界中生物的一员。整个生物界的划分,关系到植物界的细致分类和进行其他的研究。生物界究竟应该分成几个界,长期来,随着科学的发展,人们有着不同的看法。瑞典博物学家林奈在十八世纪就把生物界分成植物和动物两界。这种两界系统,建立得最早,也沿用得最广和最久。以后出现了三界系统,即在动、植物界外,又另立原生生物界。后来又有了四界系统,即植物界、动物界、原生生物界(或真菌界)和原核生物界。所谓五界系统,即植物界、动物界、真菌界、原生生物界和原核生物界。在七十年代,我国学者又把类病毒和病毒另立非细胞生物界,和植物界、动物界、菌物界(即真菌界)、原生生物界、原核生物界,共同组成了六界系统。
植物的组织
一、植物组织的概念
在个体发育中,具有相同来源的(即由同一个或同一群分生细胞生长、分化而来的)同一类型,或不同类型的细胞群组成的结构和功能单位,称为组织。由一种类型细胞构成的组织,称简单组织。由多种类型细胞构成的 1 组织,称复合组织。
二、植物组织的类型
植物组织分成分生组织和成熟组织两大类:
(一)分生组织
1.分生组织的概念:能持续分裂的细胞组成的一些细胞群,称为分生组织。2.分生组织的分类
(1)按在植物体上的位置分:根据在植物体上的位置,可以把分生组织区分为顶端分生组织、侧生分生组织和居间分生组织。
①顶端分生组织:顶端分生组织(图1—39)位于茎与根主轴的和侧枝的顶端。它们的分裂活动可以使根和茎不断伸长,并在茎上形成侧枝和叶,使植物体扩大营养面积。茎的顶端分生组织最后还将产生生殖器官。
顶端分生组织细胞的特征是:细胞小而等径,具有薄壁,细胞核位于中央并占有较大的比例,液泡小而分散,原生质浓厚,细胞内通常缺少后含物。
②侧生分生组织:侧生分生组织(图1—40)位于根和茎的侧方的周围部分,靠近器官的边缘。它包括形成层和木栓形成层。形成层的活动能使根和茎不断增粗,以适应植物营养面积的扩大。木栓形成层的活动是使长粗的根、茎表面或受伤的器官表面形成新的保护组织。
侧生分生组织的细胞与顶端分生组织的细胞有明显的区别,例如形成层细胞大部分呈长 梭形,原生质体高度液泡化,细胞质不浓厚。而且它们的分裂活动往往随季节的变化具有明显的周期性。
③居间分生组织:居间分生组织是夹在多少已经分化了的组织区域之间的分生组织,它是顶端分生组织在某些器官中局部区域的保留。
(2)按来源的性质分:分生组织也可根据组织来源的性质划分为原分生组织、初生分生组织和次生分生组织。
①原分生组织:原分生组织是直接由胚细胞保留下来的,一般具有持久而强烈的分裂能力,位于根端和茎端较前的部分。
②初生分生组织:初生分生组织是由原分生组织刚衍生的细胞组成,这些细胞在形态上已出现了最初的分化,但细胞仍具有很强的分裂能力,因此,它是一种边分裂一边分化的组织,也可看作是由分生组织向成熟组织过渡的组织。
③次生分生组织:次生分生组织是由成熟组织的细胞,经历生理和形态上的变化,脱离原来的成熟状态(即反分化),重新转变而成的分生组织。
如果把二种分类方法对应起来看,则广义的顶端分生组织包括原分生组织和初生分生组织,而侧生分生组织一般讲是属于次生分生组织类型,其中木栓形成层是典型的次生分生组织。(二)成熟组织
1.成熟组织的概念:分生组织衍生的大部分细胞,逐渐丧失分裂的能力,进一步生长和分化,形成的其它各种组织,称为成熟组织,有时也称为永久组织。
2.成熟组织的类型:成熟组织可以按照功能分为保护组织、薄壁组织、机械组织、输导 组织和分泌结构。
(1)保护组织:保护组织是覆盖于植物体表起保护作用的组织,它的作用是减少体内水分的蒸腾,控制植物与环境的气体交换,防止病虫害侵袭和机械损伤等。保护组织包括表皮和周皮。
①表皮:表皮又称表皮层(图1—41A,B;图1—42),是幼嫩的根和茎、叶、花、果实等的表面层细胞。它是植物体与外界环境的直接接触层,因此,它的特点与这一特殊位置和生理功能密切有关。
②周皮:周皮(图1—44)是取代表皮的次生保护组织,存在于有加粗生长的根和茎的表面。它由侧生分生组织——木栓形成层形成。木栓形成层平周地分裂,形成径向成行的细胞行列,这些细胞向外分化成木栓,向内分化成栓内层。木栓层、木栓形成层和栓内层合称周皮。
(2)薄壁组织:(图1—45)薄壁组织是进行各代谢活动的主要组织,光合作用、呼吸作用、贮藏作用及各类代谢物的合成和转化都主要由它进行。薄壁组织占植物体体积的大部分,如茎和根的皮层及髓部、叶肉细胞、花的各部,许多果实和种子中,全部或主要是薄壁组织,其它多种组织,如机械组织和输导组织等,常常包埋于其中。因此,从某种意义上讲,薄壁组织是植物体组成的基础。
(3)机械组织:机械组织是对植物起主要支持作用的组织。它有很强的抗压、抗张和抗曲挠的能力,植物能有一定的硬度,枝干能挺立,树叶能平展,能经受狂风暴雨及其它外力的侵袭,都与这种组织的存在有关。
根据细胞结构的不同,机械组织可分为厚角组织和厚壁组织二类。
① 厚角组织:厚角组织(图1—48)细胞最明显的特征是细胞壁具有不均匀的增厚,而且这种增厚是初生壁性质的。壁的增厚通常在几个细胞邻接处的角隅上特别明显,故称厚角组织。但也有些植物的厚角组织是细胞的弦向壁特别厚。
②厚壁组织:厚壁组织与厚角组织不同,细胞具有均匀增厚的次生壁,并且常常木质化。细胞成熟时,原生质体通常死亡分解,成为只留有细胞壁的死细胞。
根据细胞的形态,厚壁组织可分为石细胞和纤维二类。
石细胞
多为等径或略为伸长的细胞,有些具不规则的分枝成星芒状,也有的较细长。它们通常具有很厚的、强烈木质化的次生壁,壁上有很多圆形的单纹孔,由,于壁特别厚而形成明显的管状纹孔道,有时,纹孔道随壁的增厚彼此汇合,会形成特殊的分枝纹孔道。细胞成熟时原生质体通常消失,只留下空而小的细胞腔。
纤维:是二端尖细成梭状的细长细胞,长度一般比宽度大许多倍。细胞壁明显地次生增厚,但木质化程度很不一致,从不本质化到强烈木质化的都有。壁上纹孔较石细胞的稀少,并常常呈缝隙状。成熟时原生质体一般都梢失,细胞腔成为中空,少数纤维可保留原生质体,生活较长的一段时间。
(4)输导组织: 输导组织是植物体中担负物质长途运输的主要组织。根从土壤中吸收的水分和无机盐运送到地上部分。叶的光合作用的产物,由它们运送到根、茎、花、果实中去。植物体各部分之间经常进行的物质的重新分配和转移,也要通过输导组织来进行。
在植物中,水分的运输和有机物的运输,分别由二类输导组织来承担,一类为木质部,主要运输水分和溶解于其中的无机盐;另一类为韧皮部,主要运输有机营养物质。
①木质部:木质部是由几种不同类型的细胞构成的一种复合组织,它的组成包含管胞和导管分子、纤维、薄壁细胞等。其中管胞和导管分子是最重要的成员,水的运输是通过它们来实现的。
管胞和导管分子都是厚壁的伸长细胞,成熟时都没有生活的原生质体,次生壁具有各种式样的木质化增厚,在壁上呈现出环纹、螺纹、梯纹、网纹和孔纹的各种式样。然而,管胞和导管分子在结构上和功能上是不完全相同的。
管胞是单个细胞,末端尖锐,在器官中纵向连接时,上、下二细胞的端部紧密地重叠,水分通过管胞壁上的纹孔,从一个细胞流向另一个细胞。管胞大多具较厚的壁,和有重叠的排列方式,使它在植物体中还兼有支持的功能。所有维管植物都具有管胞,而且大多数蕨类植物和裸子植物的输水分子,只由管胞组成。在系统发育中,管胞向二个方向演化,一个方向是细胞壁更加增厚,壁上纹孔变窄,特化为专营支持功能的木纤维;另一个方向是细胞端壁溶解.特化为专营输导功能的导管分子。
导管分子与管胞的区别,主要在于细胞的端壁在发育过程中溶解消失,形成大的孔,称为穿孔。在木质部中,许多导管分子纵向地连接成细胞行列,通过穿孔直接沟通,这样的导管分子链就称导管。导管长短不一,由几厘米到一米左右,有些藤本植物可长达数米。导管分子的管径一般也比管胞粗大,因此,导管比管胞具有较高的输水效率。被子植物中除了最原始的类型外,木质部中主 6 要含有导管,而大多数裸子植物和蕨类植物则缺乏导管,这就是被子植物更能适应陆生环境的重要原因之一。
木质部中的纤维称为木纤维,是末端尖锐的伸长细胞,在同一植物中,一般比管胞有胶厚的壁,而且强烈木质化,成熟时原生质体通常死亡,但也有些植物的木纤维能生活较长的时间。木纤维的存在使木质部兼有支持的功能。
木质部中生活的薄壁细胞,称木薄壁细胞,它们在发育后期,细胞壁通常也木质化,这些细胞常含有淀粉和结晶,具有储藏的功能。
②韧皮部:韧皮部也是一种复合组织,包含筛管分子或筛胞、伴胞、薄壁细胞、纤维等不同类型的细胞,其中与有机物的运输直接有关的是筛管分子或筛胞。
筛管分子:与导管分子相似,是管状细胞,在植物体中纵向连接,形成长的细胞行列,称为筛管。
筛管分子不具木质化的初生壁,它们的端壁特化成筛板。在筛板上具有较大的筛孔,上下邻接的筛管分子,有较粗的原生质连络索通过筛孔互连系,有机物的运输,便是通过筛管分子间原生质体这种密切的联系来实现的,大多数被子植物中,筛管分子的侧面,紧邻着伴胞。伴胞是和筛管分子起源于同一个母细胞的小型薄壁细胞具有细胞核,它与筛管分子间有稠密的胞,间连丝相通,筛管分子的运输功能及其它生理活动,与伴胞的活动是密切相关的。筛管分子存在于被子植物中。在裸子植物和蕨类植物的韧皮部中运输有机物的分子是筛胞。它与筛管分子的主要区别,在于细胞的端壁不特化成筛板,在筛胞的壁上只具有筛域,筛域上的原生质丝通过的孔,远比筛板上的小。因此,筛胞与筛管相比,特化程度较低,输导功能较弱。
韧皮部的纤维也起支持作用,但韧皮纤维的细胞壁木质化程度较弱,或不木质化,因而质地较坚韧,有较强的抗曲挠的能力。许多植物的韧皮纤维发达,细胞长、纤维素含量高、质地柔软,成为商用纤维的重要来源。例如苎麻、亚麻、罗布麻等的韧皮纤维长而不木质化,可作衣着和帐篷的原料,黄麻、洋麻、苘麻等的韧皮纤维较短,有一定程度的木质化,可用于制麻袋和绳索等。
韧皮部的薄壁细胞,主要起储藏作用,常含有结晶和各类储藏物。
以上所述,可以了解木质部和韧皮部是植物体中起输导作用的二类复合组织,它们的组成中分别以具有输导功能的管状分子——导管分子、管胞和筛管分子或筛胞为主,所以,在形态学上,又把二者分别或合称为维管组织。
8(6)分泌结构:某些植物细胞能合成一些特殊的有机物或无机物,并把它们排出体外、细胞外或积累于细胞内,这种现象称为分泌现象。植物分泌物的种类繁多,有糖类、挥发油、有机酸、生物硷、丹宁、树脂、油类飞蛋白质、酶、,杀菌素、生长素、维生素及多
种无机盐等,这些分泌物在植物的生活中起着多种作用。例如,根的细胞分泌有机酸、生长素、酶等到土壤中,使难溶性的盐类转化成可溶性的物质,能被植物吸收利用,同时,又能吸引一定的微生物,构成特殊的根际微生物群,为植物健壮生长创造更好的条件。植物分泌蜜汁和芳香油,能引诱特殊的昆虫前来采蜜,帮助传种接代。某些植物分泌物能抑制或杀死某些病菌及其它植物,或能对动物和人形成毒害,以利于保护自身。另一些分泌物能促进其它植物的生长,形成有利的相互依存的关系等。也有些分泌物是植物的排泄物或储藏物。许多种类植物的分泌物具有重要的经济价值,例如橡胶、生漆、芳香油、蜜汁等。
植物产生分泌物的细胞来源各异,形态多样,分布方式·也不尽相同,有的单个分散于其它组织中,也有的集中分布,或特化成一定结构,统称为分泌结构。根据分泌物是否排出体外,分泌结构可分成外部的分泌结构和内部的分泌结构二大类。
①外部的分泌结构:外部的分泌结构普遍的特征,是它们的细胞能分泌物质到植物体的表面。常见的类型有腺表皮、腺毛、蜜腺和排水器等。腺表皮:即植物体某些部位的表皮细胞为腺状,具有分泌的功能。例如矮牵牛、漆树等许多植物花的柱头表皮即是腺表皮,细胞成乳头状突起飞具有浓厚的细胞质,被有薄的角质层,能分泌出含有糖、氨基酸、酚类化合物等组成的柱头液,利于粘着花粉和控制花粉萌发。
腺毛:腺毛是各种复杂程度不同的、具有分泌功能的表皮毛状附属物(图1—56)。腺毛一般具有头部和柄部二部分,头部由单个或多个产生分泌物的细胞组成。柄部是由不具分泌物功能的薄壁细胞组成,着生于表皮上。熏衣草、棉花、烟草、天竺葵、薄荷等植物的茎和叶上的腺毛均是如此。荨麻属的螯毛具有特殊的结构,它是单个的分泌细胞,似一个基部膨大的毛细管,顶部封、闭为小圆球状。当毛与皮肤接触时,圆球顶部原 9 有的缝线破裂,露出锋利的边缘,刺进皮肤,再由泡状基却将含有的蚁酸和组织胺等液体挤进伤口。许多木本植物如梨属、山核桃属、桦木肩等,在幼小,的叶片上具有粘液毛,分泌树胶类物质覆盖整个叶芽,仿佛给芽提供了一个保护性外套。食虫植物的变态叶上,可以有多种腺,毛分别分泌蜜露,粘液和消化酶等,有引诱、粘着和消化昆虫的作用。
蜜腺:蜜腺是一种分泌糖液的外部分泌结构,它们发生在植物的花上(花蜜腺)或营养体部分(花外蜜腺)。有的蜜腺只是腺表皮类型,有的分化成特殊的结构,例如,油莱的蜜腺呈圆球状,位于花托上,蓖麻、樱桃的蜜腺呈杯状,位于叶或茎上。它们的分泌细胞或仅限于表层,或有几层细胞深,靠近分泌细胞具有维管束。这些维管束的木质部和韧皮部的比例,与蜜腺分泌蜜汁的成分有关,当维管束以韧皮部为主时,蜜汁中糖分含量高,当以木质部为主时,糖分含量降低,水分含量增高。
排水器:排水器是植物格体内过剩的水分排出到体表的结构。它的排水过程称为吐水、排水器一般在叶尖或叶锯齿的边缘,具有退化的、不能关闭的气孔称为水孔。水从叶脉木质部的末端,通过排列疏松无叶绿素的叶肉组织(通水组织),经水孔流到叶表面。例如旱金莲、卷心菜、番茄、慈菇和莲等植物的叶上都有这样的排水器。
②内部的分泌结构:分泌物不排到体外的分泌结构,称为内部的分泌结构,包括分泌细胞,分泌腔或分泌道以及乳汁管。
分泌细胞:分泌细胞可以是生活细胞或非生活细胞,但在细胞腔内都积摹有特殊的分泌物。它们一般为薄擘细胞,成单个地分散于其它细胞之中;细胞体积通常明显地较周围细胞为大,尤其在长度上更为显著,因此容易识别。根据分泌物质的类型,可分为油细胞(樟科、木兰科、腊梅科等)、粘液细胞(仙人掌科、锦葵科、椴树科等)、含晶细胞(桑科、石蒜科、鸭跖草科等、鞣质细胞(葡萄科、景天科、豆科、蔷薇科等)以及芥子酶细胞(白花菜科、十字花科)等。
分泌腔和分泌道:它们是植物体内贮藏分泌物的腔或管道。它们或是因部分细胞解体后形成的,或是因细胞中层溶解,细胞相互分开而形成的,或是这二种方式相结合而形成的。例如柑橘叶子及果皮中通常看到的黄色透明小点,便是溶生方式形成的分泌腔,最初是部分细胞中形成芳香油,后来这些细胞破裂,内含物释放到溶生的腔内。在这种溶生腔的周围可以看到有部分损坏的细胞位于腔的周围。松柏类木质部中的树脂道和漆树韧皮部中的漆汁道是裂生型的分泌道,它们是分泌细胞之间的中层溶解形成的纵向或横向的长形细胞间隙,完整的分泌细胞衬在分泌道的周围,树脂或漆液曲这些细胞排出,积累在管道中。芒果属的叶和茎中的分泌道是裂溶生起源的。
乳汁管:乳汁管是分泌乳汁的管状细胞。一般有二种类型,一种称为无节乳汁管,它是一个细胞随着植物体的生长不断伸长和分枝而形成的,长度可达几米以上。如夹竹桃科、桑科和大戟属植物的乳汁管,便是这种类型。另一种称为有节乳汁管,是由许多管状细胞在发育过程中彼.此相连,以后连接壁融化消失而形成的。如菊科、罂粟科、番木瓜科、芭蕉科飞 10 旋花科以及橡胶树属等植物的。乳汁管,就是这种类型。
乳汁管的壁是初生壁,不木质化,乳汁管成熟耐是多核的,液泡与细胞质之间没有明确的界线,原生质体包围着乳汁。乳汁的成分极端复杂,往往含有碳水化合物、蛋白质、脂肪、单宁物质售植物硷、盐类、树脂及橡胶等。各种植物乳汁的成分和颜色也不相同,如罂粟的乳汁含有大量的植物硷售菊科的乳汁常含有糖类、番木瓜的乳汁可含木瓜蛋白酶。许多科、属的乳汁中含有橡胶,它是萜烯类物质,成小的颗粒悬浮于乳汁中。含胶多的植物种类成为天然橡胶的来源,其中最著名的有橡胶树、印度橡胶树、橡胶草、银色橡胶菊和杜仲等。
三.组织系统
植物的每一器官都由一定种类的组织构成由具有不同功能的器官中,组织的类型不同,排列方式不同,然而,植物体是一个有机的整体,各个器官除了具有功能上的相互联系外,同时在它们的内部结构上也必然具有连续性和统一性,在植物学上为了强调这一观点,采用了组织系统这一概念。一个植物整体上,或一个器官上的一种组织,或几种组织在结构和功能上组成一个单位,称为组织系统。
维管植物的主要组织可归并成三种组织系统,即皮组织系统、维管组织系统和基本组织系统,简称为皮系统、维管系统和基本系统。皮系统包括表皮和周皮,它们覆盖于植物各器官的麦面,形成一个保护整个植物体的连续的保护层。维管系统包括输导有机养料的韧皮部和输导水分的木质部,它们连续地贯穿于整个植物体内,把生长区、发育区售有机养料制造区和储藏区都连接起来。基本系统主要包括各类薄壁组织、厚角组织和厚壁组织乳它们是植物体各部分的基本组成。植物整体的结构表现为维管系统包埋于基本系统之中,而外面又覆盖着皮系统。各个器官结构上的变化,除表皮或周皮是始终包被在最外层外,主要表现在维管组织和基本组织的相对分布上的差异。
种子和幼苗
第一节 种子的结构
一、种子的结构
虽然种子的形态存有差异,但是种子的基本结构却是一致的。一般种子都由胚、胚乳和种皮三部分组成。
(一)胚:胚是构成种子的最主要部分,是新生植物的雏体,是由胚根、胚芽、胚轴和子叶四部分组成。
(二)胚乳:胚乳是种子集中贮藏养料的地方,一般为肉质,占有种子的一定体积。也有成熟的种子不具胚乳,这类种子在生长发育时,胚乳的养料被胚吸收,转入子叶中贮存,所以成熟的种子里胚乳不再存在,或仅残存一干燥的薄层,不起营养贮藏的作用。
(三)种皮
种皮是种子外面的覆被部分,具有保护种子不受外力机械损伤和防止病虫害入侵的作用,常由好几层细胞组成,但其性质和厚度随植物种类而异。
二、种子的类型
根据以上所述,在成熟种子中,有的具胚乳结构,有的胚乳却不存在,因此,就种子在成熟时是否具有胚乳,而把种子分为二种类型:一种是有胚乳的,另一种是没有胚乳的,前者称为有胚乳种子,后者称为无胚乳种子。
(一)有胚乳种子:这类种子由种皮、胚和胚乳三部分组成。双子叶植物中的蓖麻、烟草、桑、茄子、田菁等植物的种子,以及单子叶植物中的水稻、小麦、玉米、洋葱、高粱等植物的种子,都属于这一类型。
1.蓖麻种子的结构:蓖麻的种子椭圆形,稍侧扁,种皮坚硬光 12 滑,具斑纹。
2.小麦种子的结构:小麦籽粒的外围保护层,并不单纯是种皮,而是果实部分的果皮和种子本身的种皮共同组成的复合层,二者互相愈合,不易分离,在果实的分类上,称为颖果。
(二)无胚乳种子:这类种子由种皮和胚二部分组成,缺乏胚乳。双子叶植物如大豆飞花生、蚕豆、棉花、油菜、瓜类的种子和单子叶植物的慈菇、泽泻等的种子,都属于这一类型。
1.蚕豆种子的结构:蚕豆的种皮绿色,干燥时坚硬,浸水后转为柔软革质。
2.慈菇种子的结构:慈菇的种子很小,包在侧扁的三角形瘦果内,每一果实仅含一粒种子。种子由种皮和胚二部分组成。
第二节 种子的萌发和幼苗的形成
一、种子的休眠和种子的寿命
(一)种子的休眠:有些植物的种子,如人参飞红松,成熟后,即使在适宜的环境条件下,也不能立即萌发,必须经过一段相对静止的阶段,才萌发。种子的这一性质称为休眠。种子的休眠不外以下几种原因:
1. 种皮阻碍了种子对水分和空气的吸收:这类种子的种皮极其坚厚,含有角质、角质层或酚类化合物,不易使水分透过。
2. 种子的后熟作用:有些植物的种子在脱离母体时,胚体并未发育完全,或胚在生理上尚未全部成熟,这类种子即使取得了适宜的环境条件,也不能萌发成长。
3. 由于某些抑制性物质的存在,阻碍了种子的萌发:抑制种子萌发的物质有:有机盐、植物碱和某些植物激素,以及某些经分解后能释放氨或氰类的有机物这类物质有的产生在种子内部——胚,有的产生在种皮,有的存在于果实的果肉或果汁里,只有消除了这些抑制性物质,才能使种子得到正常的萌发。(二)种子的寿命:种子的寿命是指种子在一定条件下保持生活力的最长期限,超过这个期限,种子的生活力就丧失,也就失去萌发的能力。
二、种子萌发的外界条件:有充足的水分、适宜的温度和足够的氧气。
1.种子萌发必须有充足的水分:干燥的种子含水量少,一般仅占种子总重量的6一10%,在这样的条件下,很多重要的生命活动是无法进行的,所以种子萌发的首要条件是吸收充分的水分,只有种子吸收了足够的水分以后,才能使生命活跃起来。
2.种子萌发要有适宜的温度:种子萌发时,种子内的一系列物质变化,包括胚乳或子叶内有机养料的分解,以及由有机和无机物质同化为生命的原生质,都是在各种酶的催化作用下进行的。而酶的作用需要有一定的温度才能进行,所以温度也就成了种子萌发的必要条件之一。
3.种子萌发要有足够的氧气:种子萌发时,除水分、温度外,还要有足够的空气,这是因为种子在萌发时,种子各部分细胞的代谢作用加快进行。所有这些活动是需要能量的,能量的来源只能通过呼吸作用产生。所以种子的萌发,氧气就成为必要的条件之一,特别是在萌发初期,种子的呼吸作用十分旺盛,需氧量更大。
三、种子萌发成幼苗的过程:种子的萌发过程,现在把整个的过程,扼要归纳如下:
1.种子从外界吸收足够的水分后,原来干燥、坚硬的种皮逐渐变软。水分继续源源向胚乳和胚细胞渗入,整个种子因吸水而呈现膨胀。吸水后的种皮加强了对氧和二氧化碳的渗透性,有利于呼吸作用的进行。
2.种子萌发时的养料,是在种子形成时就已贮藏在胚乳或子叶内,原来在胚细胞里存在的各种酶物质,吸水后,在一定的温度条件下加强活动,将贮存在胚乳或子叶里的不溶性大分子化合物分解成简单的可溶性物质,运往胚根、胚芽、胚轴等部分,供细胞吸收利用。
3.种子的胚细胞同化了这部分养料,使之成为有生命的原生质,增加到细胞里去,细胞的 14 体积有了增大。经过细胞分裂,也增多了细胞的数量,这就使胚根、胚芽、胚轴很快地生长起来。这些生长活动所需要的能量,是通过一部分有机物质的氧化而产生的,所以种子在萌发时,呼吸特别旺盛,这一现象可以从图2-7的实验装置得到证明。
4.经过这一系列生长过程,种子里的胚根和胚芽迅速成长起来,在一般情况下,胚根首先突破柔软的种皮,露在种子外面,然后向下生长,形成主根。在直根系的植物种类中,这一主根也就成为成长植株根系的主轴,并由此生出各级侧根。但在须根系的植物种类里,如小麦、水稻、玉米等禾本科植物.在胚根伸出不久,又有数条与主根粗细相仿的不定根,由胚轴基部伸出,组成植株的须根系。种子萌发时先形成根,可使早期幼苗固定在土壤中,及时吸取水分和养料。
5.与此同时,胚轴的细胞也相应生长和伸长,把胚芽或胚芽连同子叶一起推出土面,如大 豆、棉花、油莱等。胚轴把胚芽推出土面,胚芽发展为新植株的茎轴系统。
6.胚根伸出不久,胚芽也突出种皮向上生长,伸出土面,形成茎和叶。有些植物的种子,子叶随胚芽一起伸出土面,展开后转为绿色,进行光合作用,如棉、油莱等的种子。待胚芽的幼叶张开行使光合作用后,子叶也就枯萎脱落。
7.至此,一株能独立生活的幼植物体也就全部长成,这就是幼苗。可见,由种子开始萌发到幼苗形成这一阶段的生长过程,是有赖于种子内的现成有机养料为营养的,幼苗才能成为独立生活的幼小植株。所以说,种子内已孕育着新植物一代的雏体,这个雏体就是胚。
四、幼苗的类型
(一)子叶出土的幼苗
这类植物的种子在萌发时,胚根先突出种皮,伸入土中,形成主根。然后下胚轴加速伸长,将子叶和胚芽推出土面,所以幼苗的子叶是出土的。种子的这一萌发方式,称出土萌发。(二)子叶留土的幼苗
这些植物种子萌发的特点是下胚轴并不伸长,而是上胚轴跟着伸长,所以子叶或胚乳并不随胚芽伸出土面,而是留在土中,直到养料耗尽死去。
种子植物的营养器官
第一节
根
一、根的生理功能和经济利用
根是植物适应陆上生活在进化中逐渐形成的器官,它具有吸收、固着、输导、合成、储藏和繁殖等功能。
根的主要功能是吸收作用:吸收土壤中的水、二氧化碳和无机盐类。
根的另一功能是固着和支持作用:植物体具有反复分枝,深入土壤的庞大根 系,以及根内牢固的机械组织和维管组织的共同作用。
根的另一功能是输导作用:由根毛、表皮吸收的水分和无机盐,通过根的维管组织输送到枝,而叶所制造的有机养料经过茎输送到根,再经根的维管组织输送到根的各部分,以维持根的生长和生活的需要。
根还有合成的功能:据研究,在根中能合成蛋白质所必需的多种氨基酸,也证明根能形成激素和植物碱。
此外,根还有储藏和繁殖的功能:根内的薄壁组织一般较发达,常为物质贮藏之所。植物的根能产生不定芽,有些植物的根,在伤口处更易形成不定芽,再育成新个体。
二、根和根系的类型
(一)主根、侧根和不定根:种子萌发时,最先是胚根突破种皮,向下生长,这个由胚根细胞的分裂和伸长所形成的向下垂直生长的根,是植物体上最早出现的根,称为主根有时也称直根或初生根。
(二)直根系和须根系:一株植物上所含有的根的总和,也就是包含主根和它分枝的各级侧根,或不定根和它分枝的各级侧根,称为根系。根系有两种基本类型,即直根系和须根系。有明显的主根和侧根区别的根系,称为直根系。无明显的主根和侧根区分的根系,如车前或根系全部由不定根和它的分枝组成,粗细相近,无主次之分,而呈须状的根系,称为须根系。
三、根的发育
(一)顶端分生组织:种子萌发后,胚根的顶端分生组织中的细胞经过分裂,生长、分化,形成了主根。
(二)根尖的结构和发展:根尖是指根的顶端到着生根毛部分的这一段。不论主根、侧根或不定根都具有根尖,它是根中生命活动最旺盛、最重要的部分。1.根冠:根冠位于根的先端,是根特有的一种组织,一般成圆锥形,由许多排列不规则的薄壁细胞组成,它象一顶帽子(即冠)套在分生区的外方,所以称为根冠。
2.分生区:分生区是位于根冠内方的顶端 17 分生组织。
3.伸长区:伸长区位于分生区稍后方的部分,细胞分裂已逐渐停止且体积扩大,细胞显著地沿根的长轴方向延伸,因此,称为伸长区。
4.成熟区
这个部分内,根的各种细胞已停止伸长,并且多已分化成熟,因此,称为成熟区。成熟区紧接伸长区,表皮常产生根毛,因此,也称为根毛区。
四、根的初生结构 在根尖的成熟区作一横切面,就能看到根的全部初生结构,由外至内为表皮、皮层和维管柱三个部分。
(一)表皮:表皮包在根的成熟区的最外面,是由原表皮发育而成,一般由一层表皮细胞组成,表皮细胞近似长方柱形,延长的面和根的纵轴平行,排列整齐紧密。
(二)皮层:皮层是由基本分生组织发育而成,它在表皮的内方占着相当大的部分,由多层薄壁细胞组成,细胞排列疏松,有着显著的胞间隙。
1.外皮层:皮层最外的一层细胞,即紧接表皮的一层细胞,往往排列紧密,无间隙,成为连续的一层,称为外皮层。
2.内皮层:皮层最内的一层,常由一层细胞组成,排列整齐紧密,无胞间隙,称为内皮层。
(三)维管柱:维管柱是内皮层以内的部分,结构比较复杂,包括中柱鞘和初生维管组织,有些植物的根还具有髓,由薄壁组织或厚壁组织组成。
中柱鞘是维管柱的外层组织,向外紧贴着内皮层。
根的维管柱中的初生维管组织,包括初生木质部和初生韧皮部,不并列成束,而是相间排列,各自成束。由于根的初生木质部在分化过程中,是由外方开始向内方逐渐发育成熟,这种方式称为外始式,这是根发育上的一个特点。
五、侧根的形成
植物根上产生的支根,不论是主根、侧根或不定根上的,统称为侧根。
种子植物的侧根,不论它们是发生在主根、侧根或不定根上,通常总是起源于中柱鞘,而内皮层可能以不同程度参加到新的根原基形成的过程中,当侧根开始发生时,中柱鞘的某些细胞开始分裂。最初的几次分裂是平周分裂,结果使细胞层数增加,因而新生的组织就产生向外的突起。以后的分裂,包括平周分裂和垂周分裂是多方向的,这就使原有的突起继续生长,形成侧根的根原基,这是侧根最早的分化阶段,以后根原基的分裂、生长,逐渐分化出生长点和根冠。生长点的细胞继续分裂、增大和分化,并以根冠为先导向前推进。
实际上,侧根的发生,在根毛区就已经开始,但突破表皮,露出母根外,却在根毛区以后的部分。这样,就使侧根的产生不会破坏根毛而影响吸收功能,这是长期以来,自然选择和植物适应环境的结果。
侧根起源于中柱鞘,因而和母根的维管组织紧密地靠在一起,这样,侧根的维管组织以后也就会和母根的维管组织连接起来。
六、根的次生生长和次生结构
就根的次生生长而言,在初生生长结束后,也就是初生结构成熟后,在初生木质部和初生韧皮部之间,有一种侧生分生组织,即维管形成层(简称形成层)发生并开始切向分裂的活动,活动的过程中,经过分裂、生长、分化而使根的维管组织数量增加,这种由维管形成层的活动结果,使根加粗的生长过程,称为次生生长。由于根的加粗,使表皮撑破,因此,又有另外一种侧生分生组织,即木栓形成层发生,它形成新的保护组织周皮,以代替表皮,这也被认为是次生生长的一部分。次生生长过程中产生的次生维管组织和周皮,共同组成根的次生结构。要了解次生生长和次生结构的情况,就必须首先了解维管形成层和木栓形成层的活动情况。
(一)维管形成层的发生和它的活动:
根部形成层的产生是在初生韧皮部的内方,即两个初生木质部脊之间的薄壁组织部分开始的。首先,这些部分的一些细胞开始分裂,成为形成层。最初的形成层是条状。以后各条逐渐向左右两侧扩展,并向外推移,直到初生木质部脊处,在该处和中柱鞘细胞相接。这时在这些部位的中柱鞘细胞恢复分生能力,向内方产生细胞,参与形成层的形成。至此,条状的形成层彼此相衔接,成为完整连续的形成层环。整个形成层环由于发生的位置先后不同,存在着不等速的细胞分裂活动,最初呈凹凸不平的波状。以后由于原来条状的部分较早形成,因此,切向分裂的活动开始也早,所产生的组织量也较多,特别是内方新组织(即次生木质部)的增加较多,把形成层环向外较大地推移,结果整个形成层环从横切面上看,成为较整齐的圆形,此后,形成层的分裂活动也就按等速进行,有规律地形成新的次生结构,并把初生韧皮部推向外方。
形成层出现后,主要是进行切向分裂。向内分裂产生的细胞形成新的木质部,加在初生木质部的外方,称为次生木质部;向外分裂所生的细胞形成新的韧皮部,加在初生韧皮部 22 的内方,称为次生韧皮部。次生木质部和次生韧皮部,合称次生维管组织,是次生结构的主要部分。
另外,在次生木质部和次生韧皮部内,还有一些径向排列的薄壁细胞群,分别称为木射线和韧皮射线,总称维管射线。维管射线是次生结构中新产生的组织,它从形成层处向内外贯穿次生木质部和次生韧皮部,作为横向运输的结构。次生木质部导管中的水分和无机盐,可以经维管射线运至形成层和次生韧皮部。相似地,次生韧皮部中的有机养料,可以通过维管射线运至形成层和次生木质部。维管射线的形成,使根的维管组织内有轴向系统(导管、管胞、筛管,伴胞、纤维等)和径向系统(射线)之分。
根的形成层所形成的次生结构的特点,总的来说,有以下各点:
1.次生维管组织内,次生木质部居内,次生韧皮部居外,相对排列,与初生维管组织中初生木质部与初生韧皮部二者的相间排列,完全不同。维管射线是新产生的组织,它的形成,使维管组织内有轴向和径向系统之分。
2.形成层每年向内外增生新的维管组织,特别是次生木质部的增生,使根的直径不断地增大。因此,形成层也就随着增大,位置不断外移,这是必然的结果。所以形成层细胞的分裂,除主要进行切向分裂外,还得有径向分裂,及其他方向的分裂,使形成层周径扩大,才能适应内部的增长,这点将在茎内叙述。
3.次生结构中以次生木质部为主,而次生韧皮部所占比例较小,这是因为新的次生维管组织总是增加在旧韧皮部的内方,老的韧皮部因受内方的生长而遭受压力最大。越是在外方的韧皮部,受到的压力越大,到相当时候,老韧皮部就遭受破坏,丧失作用。尤其是初生韧皮部,很早就被破坏,以后就依次轮到外层的次生韧皮部。木质部的情况就完全不同,形成层向内产生的次生木质部数量较多,新的木质部总是加在老木质部的外方,因此老木质部受到新组织的影响小。所以,初生木质部也能在根的中央被保存下来,其他、的次生木质部是有增无已。因此,在粗大的树根中,几乎大部分是次生木质部,而次生韧皮部仅占极小的比例。
(二)木栓形成层的发生和它的活动:有次生生长的根,由于每年增生新的次生维管组织。在外方的成熟组织,即表皮和皮层,因内部组织的增加而受压破坏和剥落。这时伴随而发生的现象,是根的中柱鞘细胞恢复分裂能力,形成木栓形成层。木栓形成层也是侧生分生组织,它进行切向分裂,主要是向外方形成大量木栓,覆盖在根外,起保护作用,向内形成少量薄壁组织,即栓内层。木栓形成层和它所形成的木栓和栓内层总称周皮,是根加粗后所形成的次生保护组织。
上面所说的由形成层活动而产生的次生维管组织,包含次生木质部和次生韧皮部,再加木栓形成层的活动而产生的周皮,统称次生结构。粗大的根,主要是次生结构。因此,只有具形成层的大多数双子叶植物和裸子植物的根,才有这种次生结构。
现将双子叶植物根中组织分化的发育顺序列表如下,作为对根内初生结构和次生结构的整个形成过程的概括,便于复习。
第二篇:高中生物竞赛复习重点摘记:植物生理学
效实中学:植物生理学
BY: 泉泉的灯
高中生物竞赛复习摘记 补充《精英教案》
凡是生命活动较旺盛的部分,水分含量都较多。
一个成长植物细胞的细胞壁主要是由纤维素分子组成的,它是一个水和溶质都可以透过的透性膜。
细胞的吸水情况决定于细胞水势。水分交换过程是从水势高处流向水势低处。
细胞水势=渗透势+压力势+(重力势)
渗透势也成为溶质势。决定于溶液中溶质颗粒总数。例如0.1mol/L的NaCl溶液中,有将近80%的NaCl分解成Na+和Cl-,即它的溶质颗粒总数比同浓度的非电解质多80%,渗透势也低80%。
根系吸水的动力:
1、根压;
2、蒸腾拉力
影响根系吸水的土壤条件:
1、土壤中可用水分:粗砂、细砂、砂壤、壤土、黏土;
2、土壤通气状况:土壤缺氧和二氧化碳浓度过高,短期内可使细胞呼吸减弱,继而阻碍吸水;时间较长,就形成无氧呼吸,产生和积累较多酒精,根系中毒受伤,吸水更少。
3、土壤温度;
4、土壤溶液浓度
1、氮肥供应充分时,植物叶大而鲜绿,叶片功能期延长,分枝多,营养体健壮,花多,产量高。生产上常施用氮肥加速植物生长。但氮肥过多时,叶色深绿,营养体徒长,细胞质丰富而细胞壁薄,易受病虫侵害,易倒伏,抗逆能力差,成熟期延迟。然而对叶菜类植物多施氮肥还是有好处的。
植物缺氮时,植株矮小,叶小色淡或发红,分支少,花少,籽实不饱满,产量低。效实中学:植物生理学
BY: 泉泉的灯
2、磷在ATP的反应中起关键作用,磷在糖类代谢、蛋白质代谢和脂类代谢中起着重要的作用。
促进各种代谢正常进行,植株生长发育良好,同时提高作物的抗寒性与抗旱性,提早成熟。
缺磷时蛋白质合成受阻,植株矮小;叶色暗绿,可能是细胞生长慢,叶绿素含量相对升高。某些植物(如油菜)叶子有时呈红色或紫色,因为缺磷阻碍了糖分运输,叶片积累大量糖分,有利于花色素苷的形成。缺磷时,开花期和成熟期都延迟,产量降低,抗性减弱。
3、硼有抑制有毒酚类化合物形成的作用,所以缺硼时,植物中酚类化合物(如咖啡酸、叶绿酸)含量过高,嫩芽和顶芽坏死,丧失顶端优势,分支多。
4、钾使糖类合成加强,纤维素和木质素含量提高,茎杆坚韧,抗倒伏。
5、铜:缺铜时,叶黑绿,其中有坏死点,先从嫩叶叶尖起,后沿叶缘扩散到叶基部,叶也会卷皱或畸形。缺铜过甚时,叶脱落。
植物细胞对矿质元素的吸收:
植物细胞吸收溶质共有4种类型:通道运输、载体运输、泵运输、胞饮作用
通道运输:质膜上已知的离子通道有:K+、Cl-、Ca+、NO3-等。运输速度比载体蛋白运输离子或分子的速度快1000倍。
泵运输:ATP驱动质膜上的H+-ATP酶将细胞内侧的H+向细胞外侧泵出,产生质子浓度梯度和膜电位梯度,两者合称电化学势梯度;阳离子经通道蛋白从外侧进入,阴离子与H+同向运输从里到外。(次级主动运输)效实中学:植物生理学
BY: 泉泉的灯
植物体吸收矿质元素可通过叶片,但主要是通过根部。
硝酸还原酶是诱导酶,即它可通过硝酸盐的诱导使酶活性增加。不是增加了酶的活性,而是增加酶的量。
生长素:叶可以合成生长素前体,到茎部被活化。体外自根部供给的生长素由木质部运输,自叶部供给的生长素由韧皮部运输。生长素运输的速度相当于扩散作用的10倍。
第三篇:植物的激素调节高中生物教案
知识目标:
通过教学活动使学生知道植物感性运动和向性运动的现象;知道科学家研究认识生长素的过程;知道生长素的生理作用及其在农业生产上的应用;理解植物向光生长的机理;通过了解其他植物激素的作用,理解植物激素对植物生命活动调节的基本原理。能力目标:
通过引导学生设计实验,进行实验观察,培养学生投身科学实验的参与精神;通过组织学生活动,培养学生发现问题、分析问题和解决问题的能力;培养学生的创新精神,训练学生细致观察的能力和动手操作能力。态度情感目标:
通过教学和实验、实习活动,培养学生“科学为社会、科学为大众”的意识;培养学生的探究意识;使学生养成“由表及里、从现象到本质”分析问题的思维习惯和认真的工作态度。
教学建议 教材分析
“能够适应环境”是生物的一个基本特征。但对“生物如何适应环境?”,特别是“植物如何适应环境?”这些问题学生过去很少接触。本节内容沿着科学家的足迹向学生逐一介绍了一种植物激素——生长素的合成部位、产生影响的部位、在植物体内运输的规律、化学性质、生理作用以及在生产实践中的应用等多方面的知识。
有关生长素的合成部位、在植物体内运输规律以及生长素生理作用的知识,能够使学生能够从化合物、细胞的角度理解植物产生向性运动的原因,了解有关生长素的知识在生产实践中的应用,因而成为本节的重点知识。
由于不同植物器官要求的最适生长素浓度不同,植物产生“向地性”与产生“向光性”、“背地性”的机理并不完全相同,如果在教师在讲述的过程中未能给予明确的区分,将会造成学生理解上的混乱,而成为学生学习上的一个难点。
在介绍主干知识的同时,教材并没有把学生的眼光局限在知识本身,局限在对某一种激素的认识上,而是及时介绍了科学研究成果怎样应用于农业生产实践,以及与植物产生向光性有关的生长抑制物和其他植物激素,使学生能够认识到科学研究与生产实践的关系,也对植物生命活动的调节机理有一个较全面的认识。
对学生进行能力训练,使学生初步具备一种能力需要一个过程。这就需要教师在教学过程中有意识地抓住教材中提供的机会,不失时机地对学生进行能力训练。利用科学研究的过程呈现科学知识在教材中有四处。其中比较集中而完整地反映科学研究全过程的有两处。生长素的发现过程是第一处,孟德尔研究遗传的基本规律是第二处。与孟德尔发现遗传基本规律的过程相比较,对生长素的发现、认识过程历时较长,其中提出假设、通过实验求证(或检验)假设的过程也不很清晰。因此,教师在处理教材时要特别给学生点明这条科学研究的线索,让学生初步了解人类认识自然的过程。并在活动的过程中理解知识,学会运用知识,掌握科学研究的一般方法。
植物的根向下生长,茎尖向光生长的虽然是生活中常的现象,但学生有可能对此熟视无睹,并不深究其中的原因。以此作为研究内容,启发学生自己设计验证实验,使学生在活动中学习,既可以调动学生学习的积极性,又给学生提供了展示自己创新能力的机会。教师在此过程中要充分发挥主导作用,引导学生在实验材料的选择、实验装置的设置上拓展思路,帮助学生灵活运用所学知识,考虑如何实施好自己的实验方案。以达到使学生掌握知识、提高能力的目的。教法建议 一.导入新课:
1.方式一,以问题导入:
问题1:“当我们把一粒种子种在土壤中,各种条件合适、种子开始萌发。它的根和芽会朝向什么方向生长?”――根向下,芽向上、向光生长。问题2:“为什么植物的根总是向下,而芽总是向上、向光生长?”
陈述:对于植物的芽总是向光生长,很早就有人注意到了这一现象。达尔文不仅观察到了这一现象,而且还针对这一现象,进行了实验,提出了自己的看法。
2.方式二,以观察活动引入:
陈述:种子播撒在土壤中,它的方向并不是固定的。让我们看一看种子的方向对它萌发出的根和芽的生长方向有什么影响。组织学生观察教师事先准备好的实验装置或课文中的彩图。
“植物的芽为什么总是朝向固定的方向――光源的方向生长呢?”生物进化论的创立人――达尔文曾对这一现象进行过研究。二.主体知识的呈现方式:
对于生长素发现的科学史实可以采用动画媒体呈现的方式,使学生沿着科学家的足迹亲历科学发现的过程。教师可以呈现一个实验,与学生一起分析、讨论一个实验的结论。这样逐步推进,给学生在课堂上说话的机会,学生的积极性就会被调动起来。学生真正参与进来了,他们对知识的理解和掌握就会更加深入和透彻,他们对问题进行分析的能力才能得到真正的提高。
三.学生活动的组织:
1.演示实验的组织:
教师在上课前可提前4-5天请两三名同学预先将达尔文的实验用玉米种子(或其他在形态上有明显方向性、容易萌发的种子)重复出来。到上课时,由完成实验的学生对实验的全过程向全班进行介绍。然后,再由教师组织学生讨论。这种方法需要教师提前进行准备,但可以引起学生的兴趣,对完成实验的学生在各个方面都是一个锻炼。如果能在课堂上经常安排这样的活动,也可以考虑让班级中的学生轮换,以保证能有较多的学生参与到课堂教学活动中来。
2.实验方案设计活动的组织:
这是学生第一次自己设计并实施一个实验。教师首先要就实验方案的设计要求做一介绍。在实验处理上不仅要考虑设置对照组,还要考虑设置单因子变量以保证实验的信度。在对实验材料的选择上,课本中用了玉米种子,学生很容易想到用植物的种子。教师可引导学生:“比较明显的向性运动发生在植物的根和芽。我们在生活当中可以找到的既能长根又能长芽的材料还有什么?”当学生的思路打开以后,就可以以分组讨论的方式开展实验方案的设计活动了。
教师同时还要帮助学生考虑实验装置的可行性:所投入的成本、实验装置是否能够满足植物生长所需要的各项条件,以及实验装置的安全性、操作是否方便等。
因为观察到植物产生向性运动的时间会稍长一点,所以“植物向性运动的实验设计和观察”活动应在本章教学活动结束之前安排、实施并完成。
教学设计方案
第一节 植物的激素调节 设计思想:
1、设计主线
以植物生长素的发现实验、生长素的生理作用及其在农业生产中的应用、植物激素调节的作用机理为主线展开教学活动。在此过程中及时渗透科学史、科学方法、科学精神、科学价值观的教育;培养学生的参与意识、训练学生的观察能力、设计实验的能力、动手操作的能力。
2、课时计划:
采用互动式教学模式,用三课时完成。以教师提供讨论素材,组织引导学生讨论、活动,最后由师生共同总结的形式进行。
第一课时:第一阶段,由教师提问或呈现植物感性运动、向性运动的材料,启发学生思考、讨论;练习,提出假说、设计实验求证假说;第二阶段,由教师介绍达尔文的实验以及达尔文根据实验观察提出的假说。
第二课时:第一阶段,由教师提供有关验证达尔文假说的实验素材,组织学生讨论分析实验素材,引导学生得出对达尔文假说的验证实验结果,并总结对激素进行研究的具体实验方法;第二阶段,组织学生进行实验设计的练习。
第三课时:提供素材使学生了解生长素的生理作用以及各种植物激素间的相互关系,懂得植物激素调节的作用机理,以及在生产实践中如何应用有关生长素的知识。
3、重难点分析 重点:
(1)生长素发现过程中的三个实验以及对实验结果的分析。
在科学研究与发现的历史过程中,不断发生着观察(包括实验观察)、根据观察过程中所发现问题进行的分析、根据分析提出的假说和对假说的求证活动。课文中所介绍的生长素发现历史中的三个实验,完整地再现了一个假说的提出和求证过程,是对学生进行科学史教育的极好素材。如果能很好地利用这一素材,也可以使它成为对学生进行科学方法训练的一个极好机会。
(2)生长素的生理作用及其在农业生产中的应用。
科学研究的成果只有通过技术转化为社会生产力才能造福于人类。通过教学活动使学生理解生长素的生理作用,及其在生产实践中的应用,既有助于学生理解科学研究要为社会生产服务,也有助于学生理解激素调节的作用机理。
(3)植物激素间的相互作用。
其他植物激素以及植物激素间的相互作用这部分内容,也是在教学中应着重处理的一个重点。只有让学生对植物体内的其他激素有所了解,才能使学生理解植物的生命活动是由多种激素共同调节的。
难点:生长素生理作用的两重性及其运用两重性分析问题。
“引起不同器官(茎尖、根尖)细胞生长的生长素浓度不同”。如果学生没有很好地掌握这一特点,就会在运用生长素生理作用的两重性分析实际问题时出现混乱,因此此部分是学生掌握知识的一个难点。因此,教师在教学过程中一定要设法突出地明确两点:第一:生长素对各种器官具有低浓度促进生长、高浓度抑制生长的特点;第二:生长素对不同器官促进生长的最适浓度不同。
4、教学过程:
导入新课:通过语言陈述、由课本的彩图呈现或由教师呈现事先准备好的植物的向性运动实验装置,首先应与绪论课的内容联系,明确所发生的现象是植物应激性的表现。提出问题:为什么会产生这种现象?引起学生的兴趣,吸引学生的注意。
主要教学过程:通过动画媒体介绍发现生长素的一系列实验,介绍科学研究的一般过程,训练学生根据实验结果,分析问题,提出假说、求证假说、得出结论的能力。第一课时
对实验结果的分析与讨论:
“植物为什么会表现出向性运动呢?早在1880年达尔文就针对这一现象进行过实验。”(可利用动画课件,分为两部分对达尔文实验的进行介绍,从而实现引
第四篇:高中生物竞赛辅导:第一讲 植物形态解剖
世纪金榜 圆您梦想 www.xiexiebang.com
第一讲 植物形态解剖
一、竞赛中涉及的问题
在中学生物教学大纲中,已简单介绍了种子植物根、茎、叶、花、果实和种子的基本结构。根据国际生物学奥林匹克竞赛(IBO)纲要和全国中学生生物学竞赛大纲(试行)的要求,有关种子植物组织和器官解剖的知识在各级竞赛中均要求掌握并能灵活运用,因此必须在原有的中学基础上拓展和提高。现分述如下:
(一)植物的组织 1.分生组织
是由具分裂能力的细胞组成,位于植物生长的部位,根和茎的生长和加粗都与之有直接关系。组成分生组织的细胞,其主要特点是:细胞体积较小,排列紧密,壁薄,细胞核相对较大,细胞质较浓,一般没液泡或仅有分散的小液泡。
根据分生组织在植物体中的位置,可分为顶端分生组织、侧生分生组织和居间分生组织。
(1)顶端分生组织:位于茎与根主轴的和侧枝的顶端,它们的分裂活动可以使根和茎不断伸长,并在茎上形成侧枝和叶,使植物体扩大营养面积。茎的顶端分生组织最后还将产生生殖器官。
(2)侧生分生组织:位于根和茎的侧方周围部分,靠近器官的边缘。它包括形成层和木形成层。形成层的活动能使根和茎不断增粗,以适应植物营养面积的扩大。木栓形成层的活动是使长粗的根、茎表面或受伤的器官表面形成新的保护组织。侧生分生组织主要存在于裸子植物和木本双子叶植物中。草本双子叶植物中的侧生分生组织只有微弱的活力或根本不存在,在单子叶植物中侧生分生组织一般不存在,因此,草本双子叶植物和单子叶植物的根和茎没有明显的增粗生长。
(3)居间分生组织:是夹在多少已经分化了的组织区域之间的分生组织,它是顶端分生组织在某些器官中局部区域的保留。典型的居间分生组织存在于许多单子叶植物的茎和叶中,如水稻、小麦等禾谷类作物,在茎的节间基部保留居间分生组织,所以当顶端分化成幼穗后,仍能借助于居间分生组织的活动,进行拔节和抽穗,使茎急剧长高。葱、蒜、韭菜的叶子剪去上部还能继续伸长,这也是因为叶基部的居间分生组织活动的结果。落花生由于雌蕊柄基部居间分生组织的活动,而能把开花后的子房推入士中。居间分生组织与顶端和侧生分生组织相比,细胞持续活动的时间较短,分裂一段时间后,所有的细胞都完全转变成成熟组织。
根据分生组织的来源和性质不同,又可分为原分生组织,初生分生组织和次生分生组织。
(l)原分生组织:是直接由胚细胞保留下来的,一般具有持久而强烈的分裂能力。植物从个体发育开始直到生命终结为止,原分生组织连续地进行分裂。原分生组织位于根、茎生长点的最顶端。
(2)初生分生组织:是由原分生组织刚衍生的细胞组成,这些细胞在形态上已出现了最初的分化,第1页(共28页)
世纪金榜 圆您梦想 www.xiexiebang.com 但细胞仍具有很强的分裂能力,因此,它是一种边分裂、边分化的组织,也可看做是由分生组织向成熟组织过渡的组织。
(3)次生分生组织:是由成熟组织的细胞经历生理和形态上的变化,脱离原来的成熟状态(即反分化),重新转变而成的分生组织。如果把两种分类方法对应起来看,则广义的顶端分生组织包括原分生组织和初生分生组织,而侧生分生组织一般属于次生分生组织类型,其中木柱形成层是典型的次生分生组织。
2.成熟组织
分生组织衍生的大部分细胞,逐渐丧失分裂的能力,进一步生长和分化,形成的其他各种组织,称为成熟组织或永久组织。成熟组织按功能分为保护组织、薄壁组织、机械组织、输导组织和分泌结构。
(1)保护组织:是覆盖于植物体表起保护作用的组织,它的作用是减少体内水分的蒸腾,控制植物与环境的气体交换,防止病虫害侵袭和机械损伤等,保护组织包括表皮和周皮。
(2)薄壁组织:是植物体进行各种代谢活动的主要组织,光合作用、呼吸作用、贮藏作用及各类代谢物的合成和转化都主要由它进行。薄壁组织占植物体积的大部分,如茎和根的皮层及髓部、叶肉细胞、花的各部,许多果实和种子中,全部或主要是薄壁组织,其他多种组织,如机械组织和输导组织等,常包埋于其中。薄壁组织是植物体组成的基础,是基本组织的主要组成部分。此外,基本组织通常还包括厚角组织和厚壁组织。薄壁组织的细胞具有薄的初生壁,细胞体积较大,且具有发达的细胞间隙,细胞内原生质生活的时间较长,细胞分化程度较低,在一定部位和一定条件下,可以转化成为次生分生组织。根据薄壁组织的功能不同,又可分为同化组织、贮藏组织、贮水组织和通气组织。
(3)机械组织:是对植物体起主要支持作用的组织。根据细胞结构的不同,可分为厚角组织和厚壁组织两类。
①厚角组织:其细胞最明显的特征是细胞壁具有不均匀的增厚,而且这种增厚是初生壁性质的。壁的增厚通常在几个细胞邻接处的角隅上特别明显,故称厚角组织。但也有些植物的厚角组织是细胞的弦向壁特别厚。厚角组织与薄壁组织具有许多相似性,除细胞壁的初生性质外,厚角组织也是生活细胞,也经常发育出叶绿体,细胞亦具有分裂的潜能,在许多植物中,它们能参与木栓形成层的形成。厚角组织分布于茎、叶柄、叶片、花柄等部位,根中一般不存在。厚角组织的分布具有一个明显的特征,即一般总是分布于器官的外围,或直接分布于表皮下,或与表皮只隔开几层薄壁细胞。在茎和叶柄中厚角组织往往成连续的圆筒或分离成束,常在具有脊状突起的茎和叶柄中有棱的部分特别发达,例如在薄荷的方茎中,南瓜、芹菜有棱的茎和叶柄中。在叶片中,厚角组织成束地位于较大叶脉的一侧或二侧。如下图所示。
第2页(共28页)
世纪金榜 圆您梦想 www.xiexiebang.com
厚角组织分布的图解
A.在椴属木本茎中的分布 B.在南瓜属草本藤中的分布 C.在叶中的分布
1.厚角组织 2.韧皮部 3.木质部 4.脊
②厚壁组织:它与厚角组织不同,细胞具有均匀增厚的次生壁,并且常常木质化。成熟细胞的原生质体通常死亡分解,成为只留有细胞壁的死细胞。根据细胞
高中生物竞赛培优教案植物(一)
本文2025-01-29 02:28:28发表“合同范文”栏目。
本文链接:https://www.wnwk.com/article/284655.html
- 二年级数学下册其中检测卷二年级数学下册其中检测卷附答案#期中测试卷.pdf
- 二年级数学下册期末质检卷(苏教版)二年级数学下册期末质检卷(苏教版)#期末复习 #期末测试卷 #二年级数学 #二年级数学下册#关注我持续更新小学知识.pdf
- 二年级数学下册期末混合运算专项练习二年级数学下册期末混合运算专项练习#二年级#二年级数学下册#关注我持续更新小学知识 #知识分享 #家长收藏孩子受益.pdf
- 二年级数学下册年月日三类周期问题解题方法二年级数学下册年月日三类周期问题解题方法#二年级#二年级数学下册#知识分享 #关注我持续更新小学知识 #家长收藏孩子受益.pdf
- 二年级数学下册解决问题专项训练二年级数学下册解决问题专项训练#专项训练#解决问题#二年级#二年级数学下册#知识分享.pdf
- 二年级数学下册还原问题二年级数学下册还原问题#二年级#二年级数学#关注我持续更新小学知识 #知识分享 #家长收藏孩子受益.pdf
- 二年级数学下册第六单元考试卷家长打印出来给孩子测试测试争取拿到高分!#小学二年级试卷分享 #二年级第六单考试数学 #第六单考试#二年级数学下册.pdf
- 二年级数学下册必背顺口溜口诀汇总二年级数学下册必背顺口溜口诀汇总#二年级#二年级数学下册 #知识分享 #家长收藏孩子受益 #关注我持续更新小学知识.pdf
- 二年级数学下册《重点难点思维题》两大问题解决技巧和方法巧算星期几解决周期问题还原问题强化思维训练老师精心整理家长可以打印出来给孩子练习#家长收藏孩子受益 #学霸秘籍 #思维训练 #二年级 #知识点总结.pdf
- 二年级数学下册 必背公式大全寒假提前背一背开学更轻松#二年级 #二年级数学 #二年级数学下册 #寒假充电计划 #公式.pdf


