电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

机械工程英语翻译(范文模版)

栏目:合同范文发布:2025-02-01浏览:1收藏

机械工程英语翻译(范文模版)

第一篇:机械工程英语翻译(范文模版)

车床及其结构

车床是主要用于生成旋转表面和平整边缘的机床。

根据它们的使用目的、结构、能同时被安装刀具的数量和自动化的程度,车床—或更确切地说是车床类的机床,可以被分成以下几类:(1)普通车床(2)万能车床(3)转塔车床(4)立式车床(5)自动车床(6)特殊车床

虽然车床类的机床多种多样,但它们在结构和操作原理上具有共同特性。这些特性可以通过普通车床这一最常用的代表性类型来最好地说明。下面是关于图11.1所示普通车床的主要部分的描述。

车床床身:车床床身是包含了在两个垂直支柱上水平横梁的主骨架。为减振它一般由灰铸铁或球墨铸铁铸造而成。

它上面有能让大拖板轻易纵向滑动的导轨。车床床身的高度应适当以让技师容易而舒适地工作。

主轴箱:主轴箱固定在车床床身的左侧,它包括轴线平行于导轨的主轴。主轴通过装在主轴箱内的齿轮箱驱动。

齿轮箱的功能是给主轴提供若干不同的速度(通常是6到18速)。有些现代车床具有采用摩擦、电力或液压驱动的无级调速主轴箱。

主轴往往是中空的,即纵向有一通孔。如果采取连续生产,棒料能通过此孔进给。同时,此孔为锥形表面可以安装普通车床顶尖。主轴外表面是螺纹可以安装卡盘、花盘或类似的装置。

尾架:尾架总成基本包括三部分,底座、尾架体和套筒轴。底座是能在车床床身上沿导轨滑动的铸件,它有一定位装置能让整个尾架根据工件长度锁定在任何需要位置。尾架体为一能横向运动的铸件,它可以调整尾架轴线与主轴箱轴线成一直线。第三部分,套筒轴是一淬硬钢管,它能根据需要在尾架体中纵向进出移动。这通过使用手轮和螺杆来达到,与螺杆啮合的是一固接在套筒轴上的螺母。套筒轴开口端的孔是锥形的,能安装车床顶尖或诸如麻花钻和镗杆之类的工具。套筒轴通过定位装置能沿着它的移动路径被锁定在任何点。

大拖板:大拖板的主要功能是安装刀具和产生纵向和/或横向进给。它实际上是一由车床床身V形导轨引导的、能在车床床身主轴箱和尾架之间滑动的H形滑块。大拖板能手动或者通过溜板箱和光杆(进给杆)或丝杆(引导螺杆)机动。

在切削螺旋时,动力通过丝杆提供给溜板箱上的齿轮箱。在其余车削作业中,都由光杆驱动大拖板。丝杆穿过一对固定在溜板箱后部的剖分螺母。当开动特定操作杆时,剖分螺母夹在一起作为单个螺母与旋转的丝杆啮合,并带动拖板沿着床身提供进给。当操作杆脱离时,剖分螺母释放同时大拖板停止运动。

另一方面,当使用光杆时则通过蜗轮给溜板箱提供动力。蜗轮用键连接在光杆上,并与溜板箱一起沿光杆运动,光杆全长范围开有键槽。现代车床一般在主轴箱下装备快速变换齿轮箱,通过一系列齿轮由主轴驱动。它与光杆和丝杆连接,能容易并快速地通过简单转换适当的操作杆选择各种进给。

快速变换齿轮箱可用于普通车削、端面切削和螺旋切削作业中。由于这种齿轮箱与主轴相连,主轴每转一圈溜板箱(和切削刀具)运动的距离能被控制,这距离就可以被认为是进给。• 车床切削刀具

车床刀具的形状和几何参数取决于它们的使用目的。

车削刀具可以分为两个主要组别,即外部切削刀具和内部切削刀具。这两组中的每一组都包括以下类型刀具:

车削刀具:车削刀具可以是精车刀具或粗车刀具。粗车刀具刀尖半径较小,用于深切削。

而精车刀具刀尖半径较大,用于通过微量进刀深度来获得具有较好表面光洁度的最终所需尺寸。粗车刀具按其进给方向可以是右手型的或是左手型的。它们可以有直的、弯的或偏置的刀杆。

端面刀具:端面刀具用在端面作业中加工平板侧面或端部表面,也有加工左右侧表面之分。与一般采用纵向进给的车削作业相反,那些侧表面通过采用横向进给产生。

切断刀具:切断刀具,有时也称为分割刀具,用于将工件分割成若干部分和/或加工外部环形槽。

螺纹切削刀具:螺纹切削刀具根据所需螺纹的横截面,有三角形的、矩形的或梯形的切削刃。同时,这些刀具的平面角必须始终与螺纹形状的平面角保持一致。车外螺纹的螺纹切削刀具为直刀杆,而车内螺纹的螺纹切削刀具则是弯刀杆。

成形刀具:成形刀具有专门制成特定形状的刀刃,这种刀刃形状与被加工工件所需外形正好相反。

高速钢刀具通常以单件形式制造,而硬质合金或陶瓷刀具则以刀尖形式制造。后者用铜焊或机械方法固定于钢质刀杆上。

图11.2所示为机械式固定布置方式,它包括了硬质合金刀尖、断屑槽、衬垫、卡装螺杆(带有垫圈和螺母)及刀杆。顾名思义,断屑槽的功能就是不时地折断长切屑,以防形成很长的可能会在机加工操作中引起问题的缠绕切屑条。

硬质合金刀尖(或陶瓷刀尖)根据采用它们的机加工操作,可以有不同的形状。根据将刀尖装配在刀杆上是通过用铜焊还是机械卡装,刀尖可以是实心的或是带有中心通孔的。• 车床操作

在下面这节中,要讨论的是能在传统普通车床上进行的各种机加工作业。

然而,必须记住现代计算机数控车床具有更多的功能并且可以进行其它操作,例如仿型。下面是传统车床的操作。

圆柱面车削:圆柱面车削是所有车床操作中最简单也是最普通的。工件旋转一整圈产生一个圆心落在车床主轴上的圆;由于刀具的轴向进给运动这种动作重复许多次。所以,由此产生的机加工痕迹是一条具有很小节距的螺旋线,该节距等于进给。因此机加工表面始终是圆柱形的。

轴向进给通过大拖板或复式刀架手动或自动提供,然而切削深度则由横向滑板控制。粗车中,推荐使用较大切削深度(根据工件材料可达0.25英寸或6毫米)和较小进给。另一方面,精车则最好采用很小的进给、较小的切削深度(小于0.05英寸或0.4毫米)和较高的切削速度。

端面车削:端面车削操作的结果是将工件整个端部表面或者像轴肩之类的中间环形表面加工平整。在端面车削操作中,进给由横向滑板提供,而切削深度则通过大拖板或复式刀架控制。

端面车削既可以从外表面向内切削也可以从工件中心往外切削。很明显在这两种情况下机加工痕迹都是螺线形式。

通常在端面车削作业时习惯于采用夹住大拖板,这是因为切削力倾向于将刀具(当然包括整个大拖板)推离工件。在大多数端面车削作业中,工件被支撑在卡盘或花盘上。

开槽:在切断和开槽操作中,刀具只有横向进给。要采用前面已经讨论过的切断和开槽刀具。

镗孔和内部车削:镗孔和内部车削通过镗杆或合适的内部切削刀具在内表面进行。如果初始工件是实心的,则必须首先进行钻孔作业。钻孔刀具安装在尾架上,然后对着工件进给。

锥面车削:锥面车削通过沿着与车床主轴不平行而倾斜成一个等于锥面所需角度的方向进刀来实现。下面是在实际锥面车削中采用的不同方法:(1)将复式刀架盘旋转一个等于圆锥体顶角一半的角度。通过摇动复式刀架操纵柄手动提供进给。当锥角相对较大时切削外锥面和内锥面推荐使用这种方法。

(2)对很短的外锥面采用特殊的成型刀具。工件的宽度必须略小于刀具的宽度,并且工件通常由卡盘支撑或夹紧在花盘上。在这种情况下,机加工作业时只有横向进给而大拖板则夹紧在床身上。

(3)偏移尾架顶尖。对需要较小锥角(小于8°)的较长工件外锥面车削采用这种方法。工件安装于两顶尖之间;然后将尾架顶尖朝垂直于车床主轴方向移动一距离S。

(4)采用锥面车削附加装置。这种方法用于车削很长的工件,其长度大于复式刀架的整个行程。在这种场合下要遵循的步骤是将横向滑板完全脱离大拖板,然后通过锥面车削附加装置进行引导。

在此作业中,能照常使用自动轴向进给。对具有较小锥角(即8°到10°)的很长工件推荐采用这种方法。

螺纹切削:在螺纹切削作业时,轴向进给必须保持恒定速率,这取决于工件的转速(rpm)。两者之间的关系基本上由被切削螺纹所需的节距决定。

如前所述,当依靠驱动大拖板的丝杆切削螺纹时轴向进给是自动产生的。丝杆旋转一圈,大拖板就行进等于丝杆节距的一段距离。

因此如果丝杆的旋转速度等于心轴的转速(即工件的转速),生成切削螺纹的节距就正好等于丝杆的节距。

所以被切削生成螺纹的节距总是取决于丝杆和心轴的转速比:丝杆的节距/工件所需节距=工件转速/丝杆转速=心轴到大拖板的传动比。

这公式在决定车床心轴和丝杆之间的运动学关系时很有用,并且提供了正确挑选它们之间轮系的方法。

在螺纹切削作业中,工件既能支撑于卡盘中,对相对较长的工件也能安装在两个车床顶尖之间。使用的刀具外形必须正好与要切削螺纹的轮廓一致,即三角形刀具必须用于三角形螺纹等等。

滚花:滚花主要是一种不产生切屑的成型操作。它使用两个带有粗锉式表面的淬火滚轮压在旋转的工件上使工件金属产生塑性变形。

滚花用于生成粗糙的圆柱(或圆锥)面,通常用来作手柄。有时表面滚花只为装饰之故;有不同的滚花图案类型可供选择。

• Cutting Speeds and Feed切削速度和进给

切削速度,通常用每分钟表面英尺给出,就是一分钟内工件(被切削)表面给定点在圆周方向上行进的英尺数。

表面速度与转速之间的关系可以用下式给出: SFM=πDN 式中

D=用英尺表示的工件直径

N=转速

表面切削速度主要由被切削材料和切削刀具材料决定,可以从手册、切削刀具生产商提供的资料及类似的东西上查取。

一般而言,SFM当机加工冷轧或低碳钢时取100,机加工较坚韧的金属时取50,而机加工较软材料时取200。对铝而言,SFM通常可取400以上。也还存在其它一些变量影响表面切削速度的最佳值。

其中包括刀具形状、润滑剂或冷却液的类型、进给和切削深度。切削速度一旦确定,心轴转速(rpm)就能按下式得到: N=SFM/(πD)合适进给的选择取决于许多因素,例如所需表面光洁度、切削深度和所用刀具的几何形状。进给越小生成的光洁度越好,而在刀具与工件直接接触时进给越大则可以减少机加工时间。

所以对粗车一般推荐使用较大进给,而精车则用较小进给。再者,作为指导方针的进给推荐值可以从手册和切削刀具生产商提供的资料小册子上找到。

Unit 1 1中央控制单元(CPU)的功能是控制所有系统部件的运行和对数据进行数字的或是逻辑的操作。为了完成上述功能,CPU由以下两个单元组成 2. 控制单元

. 数字逻辑单元

3控制单元通过程序指令来协调大量的特种操作,这些操作包括接受输入计算机的数据,并决定和是以何种方法来处理这些数据。控制单元能指挥数字逻辑单元的操作,他把数据发送给ALU来告诉ALU根据这些数据该运行什么功能,并且在哪里把结果存储下来。控制单元完成上述操作的能力基于其安装了一个具有储存与记忆功能的总控程序机构。

4数字逻辑单元运行诸如加减比较之类的操作。这些操作是根据数据以二进制的形式表现出来的。在指示了确定的条件下,逻辑部也可以用来改变命令执行的次序。此外,逻辑部分还具有编辑或清除数据等功能。

5控制单元和数字逻辑单元都是得用寄存器来完成他们的功能的,计算机寄存器是一个可以接收短暂存储,转移数据的小记忆装置。根据计算机能力的不同,寄存器能建立出相应的字节数的字长。每个词的字节数从4到64不等!

Unit 2 生产设备的数字控制

(1)数控是程序控制的自动化,在数字控制系统中,设备通过数字,字母和符号来编码,以一种合适的格式为每一个特定的零件

或工件定义一个程序指令集。当工件变化时,程序也变化,改变程序的能力也就是适合中小批量生产。写一个新程序比改变大量生

产设备要容易的多。

(2)基本结构:数控系统由下面三部分组成:1.控制程序;2.机器控制单元;3.加工设备。三部分的基本关系,由图2.1 所示。程序输入到控制单元由送入的程序来引导加工设备控制。(3)指导程序是一步步详细的指导加工设备的指令。通常指令把主轴上刀具相对于安装工具的工作台定位。更多先进的说明包括

主轴的转速,加工工具的选择及其功能。程序刻在合适的介质中,提交到机器控制单元中,在过去几十年中,最常用的介质是一英

寸宽的打孔纸带。由于打孔纸带的广泛使用,NC 有时也叫纸带控制,然而这是现代数控使用的误称。现在进入使用更多的是磁带

和软盘。(4)机器控制单元(MUC)由电子和控制硬件组成,机器控制单元可以读出和执行指令程序,可以自动改变加工工具和其他加工 设备。

(5)执行单元是数控系统的第三基础部分,执行原件是有效执行工作的原件,最常见的数控例子其中的一个加工操作,加工设备 由工作台和主轴组成,就像用电动机来驱动一样。加工设备由控制单元来驱动控制系统的类型。

控制系统的类型

(6)数控有2 种基本类型,点对点式和轮廓式控制,点对点式控制也称定位控制,每个轴都是通过丝杠单独驱动,根据加工类型

不同,加工速度也不一样。机器开始以最大速度运行来减少非加工时间,但当他达到数据定义的位置时,机器开始减速。因此在一

个操作中,如钻或冲孔操作先定位在加工。在钻或冲孔之后,迅速收起工具移动到另一个位置重复此操作。从一个位置移到另一个

位置是非常重要的,要遵循一个原则,从效率上考虑只要时间最短即可。点对点系统主要用于钻,冲孔,直铣操作中。

(7)轮廓式也就是连续路径式系统,定位和切削同时按不同速度来控制,由于刀具在指定路线运动同时切削,因此速度和运动的

同步控制是非常重要的。轮廓式系统常用于车床铣床磨床焊接设备和加工中心。

(8)沿着路径的运动或以增量差补是几个基本方式的一个,在所有的差补中,要控制刀具的回转中心定位,补偿可以以不同直径

及刀具磨损,在数控程序中进行改写。

(9)有一些已形成差补方案来处理数控系统中连续路径和加工系统产生的问题包括: 1.线性差补;2.圆弧差补;3.螺旋线差补;4.抛物线差补;5.立体差补(10)每一种差补程序都允许程序源产生加工指令,适用于相对少的输入参数的直线或曲线路径。储存在数控单元中的模块预算指 引工具沿计算出的路径运动。

(11)线性差补是最基本的差补方法,用于连续路径的数控系统中。两轴和三轴线性差补路线在实际中有时会分辨出的,但在概念

上他们是一样的,程序源要明确指定直线的起点和缺点及沿直线的进给率。差补需计算两轴或三轴的进给速率以达到设定的进给速 度。

(12)线性差补用来差补圆是不合适的因为程序源需要明确指定线段部分(线段数量)和各自的终点来大约模拟圆弧。圆弧差补法

已形成他允许程序编程的路径,使用圆弧只要给定以下参数,圆弧终点坐标,圆心坐标,半径和刀具沿圆弧路径的走刀方向。圆弧

差补也是由许多小的直线段来实现的,但这些小线段的参数由差补模块来计算出来的,而不是程序员设定的。切削是沿着每一小线

段一个一个的进行以产生光滑曲线路径。圆弧差补的局限性是圆弧路径所在平面是由数控系统中两轴所决定的平面。

(13)螺旋线差补结合了环形差补两轴在第三轴上做线性运动这样来定义空间三维螺旋路径。(14)抛物线差补和立方差补法通过高次高程来实现自由曲线。这通常需要有强的计算能力,正因如此,他不如直线差补和环形差 补常见。他们主要用于汽车工业中具有自由风格的车身面,而这是线性差补和圆弧差补不能精确容易得到的。(15)数控技术运用于数控机床,这是数控的主要应用。现在主要用于商业。我们仍讨论数控系统特别是金属数控车床。数控车床技术

(16)种加工过程都可以在设计的专门车床上来实现加工。在车床上车削,在钻床上钻,在铣床上加工。有几种类型的磨削方法也

要有相应种类的磨床。被设计的数控磨床可以进行下列加工包括:1.钻加工;2.铣床立式和卧式主轴;3.车床卧式主轴和立式主轴;

4.卧式和立式镗床;5.仿形铣床;6.平面磨和圆柱磨

(17)除了上述几种机械加工方法,数控机床可用于其他金属加工过程包括:用于薄片板的金属板上冲孔的冲压机,用于薄片金属 弯曲的折弯机。

(18)数控技术的介入到机加工对机床的设计和运用有着显著的影响。数控影响之一在程序控制下切削金属的时间与传统手动机床__ 大得多。所以对于一些零件如主轴驱动主轴丝杠磨损更快,这些零件要设计成持续时间长的。第二,增加电子控制单元后设备成本

也随之增加,因此需要更高的利用率。取代传统手工操作的一班制,数控机床通常采用两班或三班制来获得更多的回报。数控机床 的设计中减少了非操作过程的时间如装卸工件和换刀时间。第三,增加的劳动成本由人工成本变为设备成本。考虑到人工操作的角

色,角色由技术熟练的工人控制,工件生产的每一个过程变为只控制装卸换刀和清除碎屑和类似的操作,这样一个工人可以同时操

作两台或三台车床,机床的角色和功能也改变了。数控需要设计成高度自动化具有需要在不同车床加工几种操作联合在一起一定加 工的能力,这些变化是通过一种新型车床在数控技术存在之前是不存在的,他丰富了数控加工中心

(19)加工中心是在20 世纪50 年代发展起来的具有在程序控制下在一个工件上一次裝夹完成几种不同的加工能力的机床。加工中

心能完成铣,钻,铰屑,攻丝,镗,车端面及一些类似机加工工作。另外数控加工中心的典型特征包括以下方面:

(20)(1)自动换刀能力: 多种机加工工作一位着需要多种刀具。刀具贝安装在刀库或多刀刀库中。当一把刀需要被调换时,多刀

刀座自动旋转到相应的位置上。自动化的换刀机构。在程序控制下进行,把主轴上需换下的刀和多刀刀座上的刀调换。

(21)(2)工件的自动定位: 大多数加工中心都可以使工件沿着主轴旋转因此允许刀具达到工件的四个表面。

(22)(3)托架滑动装置(平板架): 加工中心另一个特点是有两个或多个独立拖板每个拖板都可以调整在刀具上。在加工过程中,一个拖板在刀具的前部,另一个拖板在远离主轴的安全位置。这样当机床正在加工当前的零件时。操作人员就可以从上一个工作循

环中卸下最终加工好的零件,同时加紧毛坯用于下一个工作循环。

(23)加工中心可以分为立式和卧式。这是参照机床主轴方向来划分的。立式加工中心具有轴线相对工作台垂直的主轴,卧式车床 的主轴轴线是水平方向的。这种区别通常会导致在这些加工中心加工的零件类型不同。立式加工中心用于以上进刀的平面工作。卧 式加工中心用于立体形状,刀具在立体侧面可以进刀。一台数控卧式加工中心,例子如图2.2 所示,具有上面提到的一些特征。

(24)加工中心的成功应用导致了其他类似金属加工机床的发展。例如:在车削中心,把车削加工设计成一个高度自动化万能机床

可以完成车削,刨,钻,螺纹加工和类似的操作

DNC AND CNC(25)数控的发展在分批生产和小批量生产中有着重要意义,从技术和商业角度来说都有着重要意义。数控有两方面的提高和扩展,包括:1.直接数据控制;2.计算机数字控制(26)直接数据控制

直接数据控制定义为一个制造系统,一定数量的机床有一台计算机通过直接硬件连线实时控制。相应的磁带播放机忽略在直接数控

中,这样就消除系统中最不可靠的环节。不用磁带播放机而用电脑信息传给车床。原则上说一台计算机可以控制100 台独立机器

(DNC 系统在1970 年称为可控制26 台机床)直接数控(DNC)电脑设计成在需要的时候提供指令给每一台机床,当机床需要控

制指令时,计算机立即发送指令给机床。

(27)图2.3 说明了DNC 的基本配置。这个系统包括4 部分:

1.中央计算机;2.大量内存,用于存放数控程序;3.通信线;4.机床刀具

(28)计算机从海量内存中取出部分程序指令送入到需要的独立机床中。相应的计算机也接受机床反馈信息。这种双工的信息流在

实时控制加工系统中出现意味着每台机床需要指令的请求能立即得到回应。类似的,计算机必须总是要准备要接受信息和进行回应。

DNC 系统显著特点是:可以实时控制大量机床。更具机器数量和所需的计算机程度化。有时需要使用卫星计算机如图2.4 所示。卫

星计算机是更小的计算机,可以分担中央计算任务,减轻其负担。每台卫星控制几台机床。零件加工指令程序由计算机接受,储存

在内存中。当需要时卫星计算机发送指令程序到每个独立机床中。来自机床的反馈数据在电脑中央存储接受之前存储在卫星内存中。(29)计算机数字控制

由于DNC 技术的介入,在计算机技术上得到了很大的发展。计算机在尺寸和成本显著减少的同时,计算机的能力却有很大的提高。

在数控中,这些发展使得由硬件布置的MCU()变为数字电脑控制的控制单元。最早,小型机在1970 年使用。随着计算机进一步

小型化,小型机被当今的微型机取代。

(30)计算机控制也是一种数字控制,它采用微型计算机作为控制单元。由于数字电脑用于CNC 和DNC 中,只近似区分两种类

型。有三个区分原则: 1).DNC 电脑接受和发送指令数据都是来自许多机器,CNC 电脑控制只是一个机器或多个机器。

2).DNC 电脑占有一个位置通过控制来实现机器的旋转。CNC 电脑要非常靠近车床。3).DNC 软件的发展不经可以控制生产设备的每个单独零件,还可以在生产坚固性方面提供主要控制信息。CNC 的提高可以提 高特殊车床的能力。(31)电脑数控系统的大体配置如图2.5 所示。如图中所示,最初进入控制器的是磁带播放机。这样,CNC 的外部系统与传统的NC机相似。然而CNC 中的程序使用方法是不同的。Unit 3 数控编程

数控编程由一系列方向构成,这些方向导致数控车床执行某种操作,加工是最常用的进程。数控车床编程由内部编程部门来完成,在车间里,或者从外部源购买。编程还可以手动或者在计算机辅助下来完成。

程序包括指令和命令。几何指令涉及刀具和工件间的相对移动。进程指令涉及主轴速度,进给以及道具等。行动指令涉及插值的类型以及刀具或者工作台的缓慢和快速移动。切换命令涉及到开/关冷却液供给状况,主轴旋转,主轴方向,换刀,工件进给,夹具固定等等。(1)手工编程。手工编程包括根据部分工程图纸首先算出刀具,工件以及工作台的尺寸关系,继而决定执行的操作和工序。那么一个包括执行特定操作所需必要信息的程序表就准备好了,例如刀具切削,主轴转速,进给,切削深度,切削液,以及刀具或者工件间的相对位置或者移动。根据这些信息,部分程序就准备好了。通常一个纸带首先被准备好用于试用和调试程序。根据纸带被使用多久,纸袋通常用更耐用的聚酯薄膜制成。

手工编程可以由那些具有特定制造工艺知识和能够理解,阅读以及更改部分程序的人来完成。因为他们熟悉机床刀具和工艺流程,熟练的机械师可以做一些手工编程的编程培训。然而,所涉及的工作是乏味的,费时的,因此不合算。手工编程大多数用于简单的点对点应用上。

(2)计算机辅助编程。计算机辅助编程是一种涉及到特殊符号的编程语言,这种语言可以决定角点的坐标,刀口以及工件的表面。编程语言是与计算机通信的方式并且涉及到符号字符。编程员用这种语言描述加工零件,而由计算机将零件程序转换为数控机床的执行指令。许多种商业应用上的语言有多种多样的特点和应用。第一种被使用的是类似于英语语句的语言,它在十九世纪五十年代末被开发出来并被称为APT语言。这种语言,由于它多种多样的扩展形式,一直是最广泛的用于点对点和连续路径编程的语言。

复杂的工件现在使用基本的绘图进行制造,计算机辅助制造程序。刀具的路径是在类似于一个CAD程序的大量的绘图环境下制造出来的。这种机器代码由程序自动生成。

在生产开始之前,程序应该被校验,还有就是通过一个显示器观看工艺流程的模仿或者使用廉价的材料(例如铝,木头,石蜡,或者是塑料)制作工件,而不是使用指定用于已加工零件的真实材料。

计算机辅助编程有以下几个优于人工方式的重要优点。

比较容易使用的符号语言

缩短了编程时间。编程是一种容纳了大量关于机械特点和工艺变量数据的一种能力,例如动力,速度,进给,刀具形状,刀具形状改变的补给量,刀具磨损,偏转,以及冷却液的使用。

减少了在人工编程中出现人为错误的可能性。

因为编程时所需更少的时间,降低了成本。

编程语言的使用不仅导致更高的工件质量而且考虑到了机械指令的更加快速发展。另外,模拟可以在远程计算机的终端设备上运行,这就确保了程序按照既定来运行。这种方法可以防止昂贵的机器由于调试程序产生不必要的占用。

选择某一种数控机床编程语言主要取决于以下几个因素:

生产设施人员的专业水平级别

工件的复杂程度

设备的外形以及计算机的应用 涉及编程的时间及费用

因为数控涉及有关工件材料和加工参数的数据插入,编程必须由有制造业的相关方面知识的操作工和程序员来完成。在生产开始之前,程序应该被校验,还有通过一个CRT屏幕来观察工艺流程的模拟或者用廉价的材料制造工件,例如铝,木头或者塑料,而不是使用指定用于已加工零件的真实材料。

数控编程语言

自从1956念麻省理工学院的初步研究数控编程系统以来大概有超过100种的数控编程语言已经被开发出来了。大多数语言开发用于特殊的需求和机械并且它们没有经受住时间的考验。然而,相当多的语言在今天一直被使用。在本小节,我们回顾一下那些被普遍认为是重要的语言。

APT(自动编程工具),APT语言是麻省理工学院研发的关于数控机床控制编程系统的成果。它的研发开始于1956年六月,它第一次用于生产是在1959年左右。几天它是在美国应用最广泛的语言。虽然第一次打算作为一种轮廓语言。APT现在的版本可用于定位和持续路径的编程而且可用于多达五个基准轴的持续路径编程。

AUTOSPOT(用于定位工具的自动系统)。这个程序有IBM研发,在1962年第一次被引进用于PTP编程。AUTOSPOT现在的版本也可应被用于修证轮廓。

COMPACT II。这种语言是来自于制造数据系统的封装。(MDSI公司),在安阿伯,密歇根州的一家公司。数控机床控制编程的许多特点于SPLIT相似。MDSI公司将COMPACT II系统租赁给以分时为依据的用户。这种程序通过使用远程终端把程序传送给MDSI公司的计算机,有计算机转向产生数控的纸带。

ADAPT(APT的改编版本)。多种编程语言直接依据于APT程序。这些语言之一便是ADAPT,它是在空军合同下由IBM公司研发的。这种语言意图提供许多APT的特点但是用于小型计算机。ADAPT不如APT一样强大,但是能够被用于定位和修改轮廓工作的程序。

EXAPT(APT的扩展子集)。这种语言是由德国研发的。,开始于1964年之间,以APT语言为依据。有三个版本:EXAPT I ——被设计应用于定位(钻削和直切铣)。EXAPT II——被设计用于车削,还有EXAPT III—被设计用于限制轮廓的操作。EXAPT最重要的一个特点是尝试自动地计算最佳进给量和进给速度。

APT不仅仅是一种数控语言;它也是一种以APT声明为依据执行计算来。生成切割位置的计算机程序。

在APT语言中声明有四种类型:

几何声明。这些定义好的几何元素包括了工作组。它们有时也叫做定义声明。后处理程序声明。这些声明用于特殊的机械工具和控制系统。它们用于指定进给量和进给速度而且精确了机械的其他特点。

辅助声明。这些不同种类的声明常用作定义工件,刀具,以及公差等等。

铣床和车床的CNC编程于其他机械编程工艺是相似的;它需要对编程语言有一个透彻的理解。这种用作铣床和车床NC的语言通常被称为G代码。这些工序通常用于铣床机械和机加工中心,提供了一些G代码使用的经典例子,因为它包括大约了NC操作中的75%。下面编程和工艺的五类用于铣床NC编程。(下转P114)自动化编程的人工指南

NC机械编程采用两种形式:人工编程以及在CAM软件支持下的代码生成。例3-1是一个人工编程的例子。它以铣削零件图为开始,编程者设计一些能够驱动切削刀具沿着预期路径运行的G代码工序。CAM生成的NC代码为了使目标机械工具能够直接转换为零件图送给G代码程序运行在已选择的机械上,从而使用一个后处理程序。CAM软件和后处理程序分成两类。类型之一,专业CAM和简洁CAM,它是独立的,并且吸收了所有主要CAM供应商的绘图文件。第二种类型,是被CAD供应商研发的,它集成了CAD程序和运行,作为集成CAD / CAM设计软件的一部分

Unit 4 机加工与切削加工中心

(1)这篇文章介绍了计算机控制的机械刀具设计的能力和较大的发展,就想我们知道的机加工和切削加工中心,这些机器有其他

机器工具没有的柔性和多功能性,应此他们作为加工工具第一选择。机加工与切削加工中心

(2)需要注意的是每台机器他的自动化程度有多高,都要设计一种基本的加工样式就像所展示的那样,在制造过程中不同的表面 是用不同的加工方法加工的,(3)例如,如图4.3 所示,铣、端面车削、镗、钻、铰孔、切丝来获得额定的公差要求及最终表面精度。

(4)习惯性的加工过程的执行,始于工件的移动从一把加工刀具到另一把加工刀具直至所有的加工完成,这是一种切实可行的制

造方法,并具有高度的自动化。这就是生产流水线的原理。最常见的是应用于高容量或大批量的生产,生产流水线是由几种加工刀 具按一定的次序排列组成的,诸如自动发动机模块这样的工件从一个加工地点到另一个加工地点,并且在每一个加工中心都运用特

有的加工方式进行加工,工件会被输送到下一个机器进行下一个加工。

(5)有这样一些产品或加工方法,他们的生产路线是不可行或不经济的,特别是当这些种类的产品在加工时需要迅速转换加工方

法。一个重要的概念,在20 世纪50 年代末期得到发展,那就是机加工中心。一个机加工中心就是运用计算机控制的刀具在工件的

不同表面和不同的方向上进行切削操作的能力,通常说工件是不动的,而切削工具进行旋转,比如铣和钻操作。

(6)机加工中心的发展暗示着计算机控制的机器刀具之间关系的进步。如数字控制的车床加工中心拥有两个转台带动几把切削刀 具进行车削,端面车削,镗孔和切螺纹。

(7)工件在加工中心里是被安放在托盘上或模块上,那样可以被移动并且可以进行不同方向的旋转和定位,在进行特殊的切削过

程完成后,工件不需要移动到另一台机器进行钻孔,铰孔,攻丝之类的附加加工。换句话说,工件和机器是被置于工件上的。

(8)当所有的加工工作完成后,托盘会自动离开已加工工件,并且另一个托盘运用自动托盘变速器将工件进行定位和加工。所有 的传动机构都有计算机控制,并且托盘定位器有10-30 秒的循环时间,托盘台能够使得多级托盘更好的服务于加工中心,工具同样

能够被装备到不同的自动化部件中,诸如上料与下料机构。

(9)加工中心装备了可变程序的自动刀具变换器,依赖于这样的设计多达200 把切削刀具能够被贮存在刀库,刀鼓,刀链(工具

库),辅助工具库能够更好的为一些特殊加工中心提供更好的切削道具,这些刀具可以自动的任意选择到达机械主轴的最短路线,刀具交换臂是一个普通的设计机构,他可以旋转来拾取特殊的工具(每一个工具有他自己的刀杆)和他在主轴上的位置。

(10)刀具通过直接连接在刀具夹持口上的编码标签、条形码或记忆芯片来标识。一次换刀时间在5-10 秒钟,对于小的刀具可以

少于1-2 秒,对于重达110 公斤的刀具可以达到30 秒,刀具变换器的设计趋势趋向于运用简单的原理提高换刀的时间。

(11)加工中心同时装备有工具的检验台,他可以给计算机数字控制提供信息对于在换刀和刀具磨损时的误差提供补偿。接触试探

针可以自动装入工具夹持口中以确定工件的参考平面,以便对刀具设置进行选择并对加工的工件在线检测。

(12)图4.6 所示的一些表面可以被联系起来,他们的相对位置可以被确立并储存在计算机软件的数据库中,这些数据稍后可被用

于编写刀具工作路径的程序同时对刀具的长度和直径进行补偿,又可以为预先加工刀具的磨损提供补偿。

机加工与切削加工中心的种类

(13)尽管这里有不同种类的刀具设计在加工中心中,两种最基本的种类垂直主轴和水平主轴;大部分的机器拥有上述两种轴线的

能力,在加工中心中最大的切削刀具的尺寸可以绕工具一周,就像我们知道的工具包络,这个术语第一次应用在与工业机器人的联 系上。

(14)垂直主轴加工中心或是水平主轴加工中心都是为了适用在工件具有深腔的平面上执行加工工艺,如铸型和模具制造。一个垂

直主轴的加工中心类似于一个垂直主轴铣床。刀库在图示的左侧并且所有的加工方法和传动机构通过位于右侧的计算机控制托盘进 行定位和修改。

(15)因为在加工中心中由于推力的作用方向是向下的,机器具有高的刚度,并在对于加工部分有较好的精确补偿,这些机器通常 比水平主轴的机器便宜些。

(16)水平主轴的加工中心或水平机加工中心是为了适用于高大工件的表面加工的需求。托盘可以在不同的轴线(如图4.3 所示)上旋转来进行不同种类的有角定位。

(17)水平主轴加工的另一个范畴是车削加工,是用特殊机床进行计算机控制的车削加工。一个三转动架的计算机数字控制的车削

加工如图4.8 所示,这个机器是由两个水平主轴和三个转动架以及不同的切削刀具设计而成的来执行一些旋转工件的加工。

(18)万能加工中心同时装备了垂直主轴和水平主轴的机器,他们具有不同种类的特色,并且具有加工所有表面的能力(垂直的、水平的、斜的)。机加工中心的特征和能力

(19)下面是加工中心的大部分特征:

a.他们有能力有效的,经济的并且拥有重复的高精度的尺寸的能力来处理不同型号的磨具的能力。公差的范围在正负0.0025mm。

b.这些机器是万能的,拥有多达6 条线性的有角传动的轴线并且有能力快速的从一种加工方式向另一种加工方式转变来满足不同 种类的加工刀具和有效的减小地板空间。

c.装载工作和卸载工作,转换刀具,矫正,故障寻找所需的时间正在减少,应此生产能力提高,减少实验的需求尤其是对于熟练

实验的要求并且生产成本降到最低。

d.他们可以高速的自动化并相对地紧凑,应此一个工作人员可以在同一时间照顾到两台或更多的机器。

e.加工机器装备了刀具调节监测装置为了检测出工具的磨损与破裂,又可以探测工具磨损的补偿和工具调位。

f.前处理和后处理的矫正和工件加工监测在加工中心的功能。

(20)加工中心可应用于更广阔范围的不同种类型号和特征,并且他们的成本范围从5 万到100 万甚至更高。典型容量范围可达

75KW,并且最小轴转速通常在4000-8000rpm 范围里,一些可以达到75000rpm,还用于小补偿切削的特殊应用。一些托盘具有支

撑重达7000kg 工件的能力,通常高的容量用于特殊的应用当中。

(21)现在大部分机器有一个标准组件的基准构造,应此不同种类的外围装备和附件可以被安装并且和修改不同种类产品的修改要

求。(22)因为加工中心的高生产能力,大量的切削会产生并且必须被收集起来应此一些需要一些可用于切削收集处理的设计,就像图 示所举例那样,两个在横轴加工中心截面图底部的切削传送带这些特殊的加工传送带是螺旋形或螺杆型,他们沿着导槽收集切削并

且将他们输送到收集点,另一条系统会选用链式传送带。刀具的选择

(23)加工中心能够有能力需求有效的花费可以说进行有效的成本控制,他们通常不得不每天做至少两次移动,所以他们必须有效

并且可以连续调整在加工中心中产品的购买需求,因为他们固定的多功能性,但是加工中心可用于及时的制造大范围的特殊产品。

(24)种类的选择和加工中心的尺寸依赖于以下几种因素。a.产品的种类,尺寸和模具的复杂性。

b.加工方法的种类及执行方式和切削工具的需求次数。c.精确补偿的需求。d.生产速率的需求。

(25)尽管多功能性是选取加工中心的一个关键因素,我们必须考虑到权衡高成本高精度需求和比较在运用传统加工工具制造相同 产品时的成本。

第二篇:机械工程英语翻译

Unit1

1、What is the difference between an alloy and a pure metal? Pure metals are elements which come from a particular area of the periodic table.Examples of pure metals include copper in electrical wires and aluminum in cooking foil and beverage cans.合金与纯金属的区别是什么?纯金属是在元素周期表中占据特定位置的元素。例如电线中的铜和制造烹饪箔及饮料罐的铝。

Alloys contain more than one metallic element.Their properties can be changed by changing the elements present in the alloy.Examples of metal alloys include stainless steel which is an alloy of iron, nickel, and chromium;and gold jewelry which usually contains an alloy of gold and nickel.合金包含不止一种金属元素。合金的性质能通过改变其中存在的元素而改变。金属合金的例子有:不锈钢是一种铁、镍、铬的合金,以及金饰品通常含有金镍合金。

2、Why are metals and alloys used? Many metals and alloys have high densities and are used in applications which require a high mass-to-volume ratio.为什么要使用金属和合金?许多金属和合金具有高密度,因此被用在需要较高质量体积比的场合。

Some metal alloys,such as those based on aluminum, have low densities and are used in aerospace applications for fuel economy.Many alloys also have high fracture toughness, which means they can withstand impact and are durable.某些金属合金,例如铝基合金,其密度低,可用于航空航天以节约燃料。许多合金还具有高断裂韧性,这意味着它们能经得起冲击并且是耐用的。

3、The atomic bonding of metals also affects their properties.In metals, the outer valence electrons are shared among all atoms, and are free to travel everywhere.Since electrons conduct heat and electricity, metals make good cooking pans and electrical wires.金属的原子连结对它们的特性也有影响。在金属内部,原子的外层阶电子由所有原子共享并能到处自由移动。由于电子能导热和导电,所以用金属可以制造好的烹饪锅和电线。

It is impossible to see through metals, since these valence electrons absorb any photons of light which reach the metal.No photons pass through.因为这些阶电子吸收到达金属的光子,所以透过金属不可能看得见。没有光子能通过金属.4、Some of the useful properties of ceramics and glasses include high melting temperature, low density, high strength, stiffness, hardness, wear resistance, and corrosion resistance.陶瓷和玻璃的特性高熔点、低密度、高强度、高刚度、高硬度、高耐磨性和抗腐蚀性是陶瓷和玻璃的一些有用特性。

Many ceramics are good electrical and thermal insulators.Some ceramics have special properties: some ceramics are magnetic materials;some are piezoelectric materials;and a few special ceramics are superconductors at very low temperatures.Ceramics and glasses have one major drawback: they are brittle.许多陶瓷都是电和热的良绝缘体。某些陶瓷还具有一些特殊性能:有些是磁性材料,有些是压电材料,还有些特殊陶瓷在极低温度下是超导体。陶瓷和玻璃都有一个主要的缺点:它们容易破碎。

5、An optical fiber contains three layers: a core made of highly pure glass with a high refractive index for the light to travel, a middle layer of glass with a lower refractive index known as the cladding which protects the core glass from scratches and other surface imperfections, and an out polymer jacket to protect the fiber from damage.光导纤维有三层:核心由高折射指数高纯光传输玻璃制成,中间层为低折射指数玻璃,是保护核心玻璃表面不被擦伤和完整性不被破坏的所谓覆层,外层是聚合物护套,用于保护光导纤维不受损。

In order for the core glass to have a higher refractive index than the cladding, the core glass is doped with a small, controlled amount of an impurity, or dopant, which causes light to travel slower, but does not absorb the light.为了使核心玻璃有比覆层大的折射指数,在其中掺入微小的、可控数量的能减缓光速而不会吸收光线的杂质或搀杂剂。

Because the refractive index of the core glass is greater than that of the cladding, light traveling in the core glass will remain in the core glass due to total internal reflection as long as the light strikes the core/cladding interface at an angle greater than the critical angle.由于核心玻璃的折射指数比覆层大,只要在全内反射过程中光线照射核心/覆层分界面的角度比临界角大,在核心玻璃中传送的光线将仍保留在核心玻璃中。The total internal reflection phenomenon, as well as the high purity of the core glass, enables light to travel long distances with little loss of intensity.全内反射现象与核心玻璃的高纯度一样,使光线几乎无强度损耗传递长距离成为可能。Unit7

1、The importance of machining processes can be emphasised by the fact that every product we use in our daily life has undergone this process either directly or indirectly.机加工过程的重要性可通过日常生活使用的每件产品都直接或间接经历这一过程的事实来强调。(1)In USA, more than $100 billions are spent annually on machining and related operations.(2)A large majority(above 80%)of all the machine tools used in the manufacturing industry have undergone metal cutting.(3)An estimate showed that about 10 to 15% of all the metal produced in USA was converted into chips.(1)在美国,每年花在机加工及其相关作业上的费用都多于千亿美元

(2)用于制造业的全部机床中的大多数(多于80%)都经历过金属切削。(3)有估计显示美国生产的所有金属中约10到15%转变成了切屑。

2、Chip Formation 切屑的形成

Metal cutting process is a very complex process.Fig.7.2 shows the basic material removal operation schematically.金属切削过程是一个很复杂的过程。图7.2用图的形式显示了基本材料去除作业。The metal in front of the tool rake face gets immediately compressed, first elastically and then plastically.This zone is traditionally called shear zone in view of fact that the material in the final form would be removed by shear from the parent metal.在刀具前倾面前的金属直接受到压缩,首先弹性变形然后塑性变形。考虑到最终形状中的材料是通过剪切从母体金属去除的,此区域传统上称为剪切区。The actual separation of the metal starts as a yielding or fracture, depending upon the cutting conditions, starting from the cutting tool tip.Then the deformed metal(called chip)flows over the tool(rake)face.金属的实际分离始于屈服或断裂(视切削条件而定),从切削刀尖开始。然后变形金属(称为切屑)流过刀具(前倾)面。

If the friction between the tool rake face and the underside of the chip(deformed material)is considerable, then the chip gets further deformed, which is termed as secondary deformation.The chip after sliding over the tool rake face is lifted away from the tool, and the resultant curvature of the chip is termed as chip curl.如果刀具前倾面与切屑(变形金属)底面之间的摩擦相当大,那么切屑进一步变形,这也叫做二次变形。滑过刀具前倾面的切屑被提升离开刀具,切屑弯曲的结果被称为切屑卷。

3、Discontinuous Chip.The segmented chip separates into short pieces, which may or may not adhere to each other.Severe distortion of the metal occurs adjacent to the face, resulting in a crack that runs ahead of the tool.间断切屑:分段的切屑分散成小碎片,既可能相互附着也可能不相互附着。在靠近切削面处发生金属的剧烈变形,导致在运动刀具前方金属层产生裂缝。Eventually, the shear stress across the chip becomes equal to the shear strength of the material, resulting in fracture and separation.With this type of chip, there is little relative movement of the chip along the tool face, Fig.7.3a.最后,横过切屑的剪切应力与材料的剪切强度相等,造成断裂和分离。生成这类切屑时,切屑沿刀具面几乎没有相对运动,见图7.3a。

4、Cutting Fluids 切削液

The functions of cutting fluids(which are often erroneously called coolants)are: • To cool the tool and workpiece • To reduce the friction • To protect the work against rusting • To improve the surface finish • To prevent the formation of built-up edge • To wash away the chips from the cutting zone 切削液(经常误称为冷却液)的功能如下:

• 冷却刀具和工件 • 减少摩擦 • 保护工件不生锈 • 改善表面光洁度

• 防止切屑瘤的形成 • 从切削区冲掉切屑

However, the prime function of a cutting fluid in a metal cutting operation is to control the total heat.This can be done by dissipating the heat generated as well as reducing it.The mechanisms by which a cutting fluid performs these functions are: cooling action and lubricating action.然而,在金属切削作业中切削液的主要功能是控制总热量。这可通过既散发又减少所产生的热量来达到。切削液实现这些功能的机理是:冷却作用和润滑作用

5、Lubricating action.The best improvement in cutting performance can be achieved by the lubricating action since this reduces the heat generated, thus reducing the energy input to the metal cutting operation.润滑作用:切削作业的最大改善可通过润滑作用来达到,由于它减少了热量的产生因而减少了金属切削作业的能量输入。

However, if the cutting fluid is to be effective, it must reach the chip tool interface.But it is not easy to visualize how it is accomplished in the case of a continuous turning with a single point turning tool, specially when the chip-tool contact pressure is as high as 70 MPa.可是,如果要使切削液起作用就必须让它到达切屑刀具接触界面。但如何在采用单尖刀具连续车削的场合尤其是切屑-刀具接触压力高达70MPa时实现并非易事。

Merchant thought that minute asperities existed at the chip-tool interface and the fluid was drawn into the interface by the capillary action of the interlocking network of these surface asperities.Merchant认为:在切屑与刀具接触界面上存在微小的粗粒,切削液通过这些表面的微小粗粒组成连锁的网络的毛细管被吸入到切屑与刀具的接触界面上。

第八单元

1、Grinding is a manufacturing process that involves the removal of metal by employing a rotating abrasive wheel.The latter simulates a milling cutter with an extremely large number of miniature cutting edges.磨削是通过采用旋转磨轮去除金属的制造工艺。磨轮用非常大量的微型切削刃模仿铣刀进行切削。

Generally, grinding is considered to be a finishing process that is usually used for obtaining high-dimensional accuracy and better surface finish.Grinding can be performed on flat, cylindrical, or even internal surfaces by employing specialized machine tools, which are referred to as grinding machines.一般而言,磨削被认为是一种通常用于获得高尺寸精度和较好表面光洁度的精加工作业。磨削通过采用被称为磨床的特殊机床能在平面、圆柱面甚至内表面上进行。

Obviously, grinding machines differ in construction as well as capabilities, and the type to be employed is determined mainly by the geometrical shape and nature of the surface to be ground, e.g., cylindrical surfaces are ground on cylindrical grinding machines.显然,磨床根据结构和功能的不同有所区别,使用何种形式的磨床主要取决于被磨削表面的几何形状和物理性质。例如,圆柱面在外圆磨床上磨削。

2、Internal grinding.Internal grinding is employed for grinding relatively short holes, as shown in Fig.8.3.The workpiece is held in a chuck or a special fixture.Both the grinding wheel and the workpiece rotate during the operation and feed is applied in the longitudinal direction.内表面磨削:内表面磨削用于相对较短的孔,如图8.3所示。工件安装在卡盘或特殊夹具上。作业时砂轮和工件都回转并且采用纵向进给。

Any desired depth of cut can be obtained by the cross feed of the grinding wheel.A variation from this type is planetary internal grinding, which is recommended for heavy workpieces that cannot be held in chucks.通过砂轮的横向进给能得到任意所需的切削深度。这种方法的一个变体是行星式内表面磨削,当工件较重不能用卡盘固定时推荐使用。

In that case, the grinding wheel not only spins around its own axis but also rotates around the centerline of the hole that is being ground.在这种情况下,砂轮不但绕自身轴线回转,同时还绕被磨削孔的中心线旋转。

3、Grinding Wheels 砂轮

Grinding wheels are composed of abrasive grains having similar size and a binder.The actual grinding process is performed by the abrasive grains.Pores between the grains within the binder enable the grains to act as separate single-point cutting tools.砂轮由具有相近尺寸的磨料颗粒和粘合剂组成。实际磨削作业由磨粒完成。在粘合剂中磨粒之间的孔隙使磨粒能象独立的单刃切削刀具一样工作。These pores also provide space for the generated chips, thus preventing the wheel from clogging.In addition, pores assist the easy flow of coolants to enable efficient and prompt removal of the heat generated during the grinding process.这些孔隙同时还为产生的切屑提供空间以防砂轮堵塞。另外孔隙帮助冷却液容易流动,从而使在磨削作业中产生的热量能有效而迅速地散发。

Grinding wheels are identified based on their shape and size, kind of abrasive, grain size, binder, grade(hardness), and structure.砂轮根据它们的形状和尺寸、磨料的类型、磨粒的大小、粘合剂、等级(硬度)和结构组织来分类

4、The grade of the bond.The grade of the bond is actually an indication of the resistance of the bond to pulling off the abrasive grains from the grinding wheel.Generally, wheels having hard grades are used for grinding soft materials and vice versa.粘结体的等级:粘结体的等级实际上是其抵抗将磨粒从砂轮上拉脱的指标。一般而言,具有较硬等级的砂轮用于磨削较软材料,反之亦然。

If a hard-grade wheel were to be used for grinding a hard material, the dull grains would not be pulled off from the bond quickly enough, thus impeding the self-dressing process of the surface of the wheel and finally resulting in clogging of the wheel and burns on the ground surface.如果较硬等级的砂轮用于磨削较硬材料,磨钝的磨粒将不能足够快地脱离粘结体,这会妨碍砂轮表面的自修复,最终导致砂轮的堵塞并在被磨表面留下灼斑。In fact, the cutting properties of all grinding wheels must be restored periodically by dressing with a cemented carbide roller or a diamond tool to give the wheel the exact desired shape and remove all worn abrasive grains.实际上,所有砂轮的磨削性能都必须定期地通过使用硬质合金滚轮或金刚石修整器修整而被恢复,以求很准确地把砂轮加工成要求的形状,并去除已磨钝的磨粒。第十一单元

1、The Lathe and Its Construction 车床及其结构

A lathe is a machine tool used primarily for producing surfaces of revolution and flat edges.车床是主要用于生成旋转表面和平整边缘的机床。

Based on their purpose, construction, number of tools that can simultaneously be mounted, and degree of automation, lathes-or, more accurately, lathe-type machine tools can be classified as follows: 根据它们的使用目的、结构、能同时被安装刀具的数量和自动化的程度,车床—或更确切地说是车床类的机床,可以被分成以下几类:

(1)Engine lathes(2)Toolroom lathes(3)Turret lathes(4)Vertical turning and boring mills(5)Automatic lathes(6)Special-purpose lathes(1)普通车床(2)万能车床(3)转塔车床(4)立式车床(5)自动车床(6)特殊车床

2、The carriage.The main function of the carriage is mounting of the cutting tools and generating longitudinal and/or cross feeds.It is actually an H-shaped block that slides on the lathe bed between the head stock and tail stock while being guided by the V-shaped guide ways of the bed.大拖板:大拖板的主要功能是安装刀具和产生纵向和/或横向进给。它实际上是一由车床床身V形导轨引导的、能在车床床身主轴箱和尾架之间滑动的H形滑块。

The carriage can be moved either manually or mechanically by means of the apron and either the feed rod or the lead screw.大拖板能手动或者通过溜板箱和光杆(进给杆)或丝杆(引导螺杆)机动。

3、Turning tools.Turning tools can be either finishing or rough turning tools.Rough turning tools have small nose radii and are employed when deep cuts are made.车削刀具:车削刀具可以是精车刀具或粗车刀具。粗车刀具刀尖半径较小,用于深切削。

On the other hand, finishing tools have larger nose radii and are used for obtaining the final required dimensions with good surface finish by making slight depths of cut.Rough turning tools can be right-hand or left-hand types, depending upon the direction of feed.They can have straight,bent, or offset shanks.而精车刀具刀尖半径较大,用于通过微量进刀深度来获得具有较好表面光洁度的最终所需尺寸。粗车刀具按其进给方向可以是右手型的或是左手型的。它们可以有直的、弯的或偏置的刀杆。

4、Cylindrical turning.Cylindrical turning is the simplest and the most common of all lathe operations.A single full turn of the workpiece generates a circle whose center falls on the lathe axis;this motion is then reproduced numerous times as a result of the axial feed motion of the tool.圆柱面车削:圆柱面车削是所有车床操作中最简单也是最普通的。工件旋转一整圈产生一个圆心落在车床主轴上的圆;由于刀具的轴向进给运动这种动作重复许多次。

The resulting machining marks are, therefore, a helix having a very small pitch, which is equal to the feed.Consequently, the machined surface is always cylindrical.所以,由此产生的机加工痕迹是一条具有很小节距的螺旋线,该节距等于进给。因此机加工表面始终是圆柱形的。

The axial feed is provided by the carriage or the compound rest, either manually or automatically, whereas the depth of cut is controlled by the cross slide.轴向进给通过大拖板或复式刀架手动或自动提供,然而切削深度则由横向滑板控制。

In roughing cuts, it is recommended that large depths of cuts(up to 0.25in.or 6mm, depending upon the workpiece material)and smaller feeds would be used.On the other hand, very fine feeds, smaller depths of cut(less than 0.05in, or 0.4mm), and high cutting speeds are preferred for finishing cuts.粗车中,推荐使用较大切削深度(根据工件材料可达0.25英寸或6毫米)和较小进给。另一方面,精车则最好采用很小的进给、较小的切削深度(小于0.05英寸或0.4毫米)和较高的切削速度。第十二单元

1、Drilling and Drills 钻削和钻头

Drilling involves producing through or blind holes in a work piece by forcing a tool, which rotates around its axis, against the work piece.钻削就是通过迫使绕自身轴线旋转的切削刀具进入工件而在其上生成通孔或盲孔。

Consequently, the range of cutting from that axis of rotation is equal to the radius of the required hole.In practice, two symmetrical cutting edges that rotate about the same axis are employed.因此,从旋转轴线开始的切削范围等于所需孔的半径。实际上,使用的是两条围绕相同轴线旋转的对称切削刃。

2、Each of the cutting edges of a milling cutter acts as an inpidual single-point cutter when it engages with the workpiece metal.Therefore, each of those cutting edges has appropriate rake and relief angles.在铣刀切削工件金属时,铣刀的每条切削刃都象一单独的单刃刀具一样作用。所以每条切削刃都适当的前后角。

Since only a few of the cutting edges are engaged with the workpiece at a time, heavy cuts can be taken without adversely affecting the tool life.In fact, the permissible cutting speeds and feeds for milling are three to four times higher than those for turning or drilling.由于同一时间只有部分切削刃切削工件,因此可以在对刀具寿命没有不利影响的情况下承担重型切削。事实上,铣削允许的切削速度和进给比车削或钻削高三到四倍。

Moreover, the quality of the surfaces machined by milling is generally superior to the quality of surfaces machined by turning, shaping, or drilling.此外,由铣削加工的表面质量通常优于车削、刨削或钻削加工的表面质量。A wide variety of milling cutters is available in industry.This, together with the fact that a milling machine is a very versatile machine tool, makes the milling machine the backbone of a machining workshop

机械工程英语翻译(范文模版)

第一篇:机械工程英语翻译(范文模版) 车床及其结构 车床是主要用于生成旋转表面和平整边缘的机床。 根据它们的使用...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部