电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

论文题目 循环流化床锅炉旋风分离器分析循环流化床锅炉旋风分离器分析

栏目:合同范文发布:2025-01-31浏览:1收藏

论文题目 循环流化床锅炉旋风分离器分析循环流化床锅炉旋风分离器分析

第一篇:论文题目 循环流化床锅炉旋风分离器分析循环流化床锅炉旋风分离器分析

自循环流化床燃烧技术出现以来,循环床锅炉在世界范围内得到广泛的应用,大容量的循环床锅炉已被发电行业所接受。循环流化床低成本实现了严格的污染排放指标,同时燃用劣质燃料,在负荷适 应性和灰渣综合利用等方面具有综合优势,为煤粉炉的节能环保改造提供了一条有 效的途径主循环回路是循环流化床锅炉的关键,其主要作用是将大量的高温固体物 料从气流中分离出来,送回燃烧室,以维持燃烧室稳定的流态化状态,保证燃料和 脱硫剂多次循环、反复燃烧和反应,以提高燃烧效率和脱硫效率。主循环回路是循环流化床锅炉的关键,其主要作用是将大量的高温固体物料从气流中 分离出来,送回燃烧室,以维持燃烧室的稳定的流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应,以提高燃烧效率和脱硫效率。主循环回路不仅直接影响整个循环流化床 锅炉的总体设计、系统布置,而且与其运行性能有直接关系。分离器是主循环回路的主要 部件,因而人们通常把分离器的形式,工作状态作为循环流化床锅炉的标志。分离器是主循环回路的关键部件,其作用是完成含尘气流的气固分离,并把收 集下来的物料回送至炉膛,实现灰平衡及热平衡,保证炉内燃烧的稳定与高效。从 某种意义上讲,CFB 锅炉的性能取决于分离器的性能,所以循环床技术的分离器研 制经历了三代发展,而分离器设计上的差异标志了 CFB 燃烧技术的发展历程。循环流化床循环流化床 循环流化床 循环流化床 1.1 循环流化床锅炉简介 循环流化床(CFB)燃烧技术是一项近二十年发展起来的清洁煤燃烧技术。流化床 燃烧是床料在流化状态下进行的一种燃烧,其燃料可以是化石燃料(如煤、煤矸石)、工农业废弃物(如可燃垃圾、高炉煤气)和各种生物质燃料(如秸秆)。流化燃烧是一种介于层状燃烧与悬浮燃烧之间的燃烧方式。煤预先经破碎加工成一 定大小的颗粒(一般为<8mm)后置于布风板上,煤经给煤机进入燃烧室,燃烧室 内料层的静止高度约在 350~500mm,空气则通过布风板由下向上吹送。当空气以 较高的气流速度通过料层时,煤粒间的空隙加大,料层膨胀增高,所有的煤粒、灰 渣纷乱混杂,上下翻腾不已,颗粒和气流之间的相对运动十分强烈。这种处于沸腾 状态的料床,称为流化床。这种燃烧方式即为流化燃烧。流化燃烧后的细小颗粒燃 料随高温烟气飞出炉膛,大部分被固态物料分离器捕捉,经返料器送回炉膛循环燃 烧,这就是循环流化燃烧技术,采用循环流化燃烧技术生产的锅炉即为循环流化床 锅炉。从已投运流化床锅炉分折,流化床锅炉具有独特的优越性:(1)燃烧效率高: 国外循环流化床锅炉,燃烧效率高达 99%;我国设计,投运流化床锅炉效率也高达 95-98%。该炉型燃烧效率高的主要原因是煤燃烬率高。煤粒燃烬率分三种情况分 析:较小的颗粒(小于 0.04mm),随烟气速度进行流动,它们未达到对流受热面 就完全燃烬了,在炉膛高度有效范围内,它们燃烬时间是足够的;对于较大一些煤 粒(大于 0.6mm),其沉降速度高,只有当其直径进一步燃烧或相互磨擦碎裂而 减小时,才能随烟气逸出,较大颗粒经分离器分离返回炉膛循环燃烧;对于中等粒 度煤,其燃烧时间要比停留时间长,这给颗粒燃烬提供了足够时间,未燃烬颗粒循 环燃烧,达到燃烬的目的。(2)、煤种适应性强:流化床炉可燃用低热值的劣质烟 煤、页炭、炉渣矸石甚至垃圾、秸秆等,对煤种适应性比煤粉炉、层燃炉好。在循 环床锅炉中,通过粒子的循环回燃,炉膛温度能被控制,煤粒着火和燃烬较好。流 化床锅炉设计特点是炉膛高,给煤、布风、出渣等设计都适应劣质煤的燃烧,布风 装置将空气分别送入一次风的风室及分布板,送入二次风的风道喷咀。一次风约占 总风量 60%,由燃烧室底部送入,二次风由密相区的不同高度送入,给高效燃烧提 供了条件。由于采用了分离回料装置,为劣煤分级燃烧、回燃提供了条件,循环流 化床锅炉有两种类型分离装置,一种是惯性分离,一种是旋风分离;现在生产的锅 炉多采用一级高温分离器。国产循环流化床锅炉采用较低流化速度(一般 4.5m/s -5.5m/s)、较低循环倍率约(10-20),因此,分离受热面磨损较小。(3)、添加石灰石,有较高脱硫效果:流化床锅炉脱硫原理是:煤燃烧过程中产生氧化硫 与流化床炉燃烧添加剂一氧化钙发生反应,产生的硫酸钙随炉渣排出,脱硫效果可 800-900低温下燃烧,可控制NOx 生成。流化床炉 NOx 生成原理是 空气中氮气和氧气,在燃烧时产生 NO。在流化床炉燃烧过程中,燃料中 90%的氮 原素转化成 NO2,大约 10%的氮元素反应生成 NO。在燃烧过程中,生成的 NOx CaO还原,减少了 NOx 排放。(5)、系统简单、运行操作方便。(6)、灰渣综合利用,前途广泛:由于流化床炉渣可燃物极低(约 1-1.5%),而且具有较经济的脱硫效果,增加了灰中硫酸钙含量,这对综合利用提供了有利条 件。灰渣可做各种建材的最好掺合料,水泥行业、制砖行业利用灰渣前途最广泛该 炉型推广应用,可减少除灰渣场地,对无灰场条件的中,小城市而言不仅可以大大 改善环境条件,而且可以推进建材行业发展,变废为宝,使煤碳发挥综合效益。1.1.1 循环流化床锅炉结构 锅炉采用单锅筒,自然循环方式,总体上分为前部及尾部两个竖井。前部竖井 为总吊结构,四周有膜式水冷壁组成。自下而上,依次为一次风室、浓相床、悬浮 段、蒸发管、高温过热器、低温过热器及高温省煤器。尾部竖井采用支撑结构,由 上而下布置低温省煤器及管式空气预热器。两竖井之间由立式旋风分离器相连通,分离器下部联接回送装置及灰冷却器。燃烧室及分离器内部均设有防磨内衬,前部 竖井用敖管炉墙,外置金属护板,尾部竖井用轻型炉墙,由八根钢柱承受锅炉全部 重量。锅炉采用床下点火(油或煤气),分级燃烧,一次风率占 50—60%飞灰循环为 低倍率,中温分离灰渣排放采用干式,分别由水冷螺旋出渣机、灰冷却器及除尘器 灰斗排出。炉膛是保证燃料充分燃烧的关键,采用湍流床,使得流化速度在 3.5—4.5m/s,并设计适当的炉膛截面,在炉膛膜式壁管上铺设薄内衬(高铝质砖),即使锅炉燃烧用不同燃料时,燃烧效率也可保持在 98—99%以上。分离器入口烟温在 450 度左右,旋风筒内径较小,结构简化,筒内仅需一层薄 薄的防磨内衬(氮化硅砖)。其使用寿命较长。循环倍率为 10—15 左右。循环灰输送系统主要由回料管、回送装置,溢流管及灰冷却器等几部分组成。床温控制系统的调节过程是自动的。在整个负荷变化范围内始终保持浓相床床 860度的恒定值,这个值是最佳的脱硫温度。当自控制不投入时,靠手动也能维 持恒定的温床。保护环境,节约能源是各个国家长期发展首要考虑的问题,循环流化床锅炉正 是基于这一点而发展起来,其高可靠性,高稳定性,高可利用率。最佳的环保特性 以及广泛的燃应性,越来越受到广泛关注,完全适合我国国情及发展优势。1.1.2 当固体颗粒中有流体通过时,随着流体速度逐渐增大,固体颗粒开始运动,且固体颗粒之间的摩擦力也越来越大,当流速达到一定值时,固体颗粒之间的摩擦力 与它们的重力相等,每个颗粒可以自由运动,所有固体颗粒表现出类似流体状态的现象,这种现象称为流态化。对于液固流态化的固体颗粒来说,颗粒均匀地分布于床层中,称为“散式”流态化。而 对于气固流态化的固体颗粒来说,气体并不均匀地流过床层,固体颗粒分成群体作紊流运 动,床层中的空隙率随位置和时间的不同而变化,这种流态化称为“聚式”流态化。循环流 化床锅炉属于“聚式”流态化。固体颗粒(床料)、流体(流化风)以及完成流态化过程的设备称为流化床。1.1.3 临界流化速度 对于由均匀粒度的颗粒组成的床层中,在固定床通过的气体流速很低时,随着风 速的增加,床层压降成正比例增加,并且当风速达到一定值时,床层压降达到最大 值,该值略大于床层静压,如果继续增加风速,固定床会突然解锁,床层压降降至 床层的静压。如果床层是由宽筛分颗粒组成的话,其特性为:在大颗粒尚未运动前,床内的小颗粒已经部分流化,床层从固定床转变为流化床的解锁现象并不明显,而 往往会出现分层流化的现象。颗粒床层从静止状态转变为流态化进所需的最低速度,称为临界流化速度。随着风速的进一步增大,床层压降几乎不变。循环流化床锅炉 一般的流化风速是 倍的临界流化速度。1.1.4 影响临界流化速度的因素(1)料层厚度对临界流速影响不大。(2)料层的当量平均料径增大则临界流速增加。(3)固体颗粒密度增加时临界流速增加。提高循环流化床锅炉热效率的措施提高循环流化床锅炉热效率的措施 提高循环流化床锅炉热效率的措施 提高循环流化床锅炉热效率的措施 适当提高燃烧温度,碳粒子的燃烬时间与燃烧温度有关,提高燃烧温度能明显的缩短 碳粒子的燃烬时间。如下式 16 exp(10 77 其中:τp为碳粒子的 燃烬时间s;T 为燃烧温度;dp为碳粒子直径cm。当τp 从800升高到950时,碳粒子的燃烬时间缩短6 倍左右。当燃烧温度从870提高到920,燃烧温度增加50 时,锅炉燃烧效率提高了2 个百分点左右。降低飞灰含碳量提高锅炉燃烧效率,影响飞灰含碳量的因素有如下方面:燃烧温度、煤的种类、分离飞灰的循环倍率、燃烧室上部燃烧偏斜、燃烧氧量的供给、分离器的分离 效率、除尘灰再循环燃烧。(1)温度的影响:经试验证明当燃烧温度从900提高到950 时,飞灰含碳量从22.5%降到10%左右,降低了12.5 个百分点。燃烧温度提高1,飞灰 含碳量降低0.25 个百分点,这个影响程度的不同是由煤的燃烧反应性差异所决定的。(2)挥发分低的难燃煤种,飞灰含碳量较高,挥发分高的易燃煤种,飞灰含碳量较低,一般无 烟煤的飞灰含碳量比烟煤要高5-10 个百分点。(3)分离灰循环倍率的影响: 1-1从图上可以看出分离灰循环倍率为5 时,飞灰含碳量为12.5%左右,而分离灰循环倍率从 提高到4,飞灰含碳量降低约2.5个百分点,7 提高到8 时,降低了1 个百分点,14 18时,只降低了 0.5 个百分点,离灰循环倍率在 2-6 之间变化,对飞灰含碳量的影 响是最有效的。(4)器分离效率:分离器的分离效率与分离灰循环倍率的关系为 为分离灰循环倍率,ηc为分离器分离效率,Ay 为燃煤灰分含量,α 灰份额。分离效率高,分离灰循环倍率大;煤中灰份含量高,分离灰循环倍率大;燃烧 室出口飞灰份额大,分离灰循环倍率高。(5)优化燃烧调整和控制:提高燃烧效果,900-950;改善脱硫效果,830-880;控制 NOX 的生成量 200mg/Nm3-400 mg/Nm3 间,(830-930);烟气成分包括O2、NO2(NO)、N2O、SO2(SO3)、CO2、CO、N2等,根据O2,CO 和CO2 含量控制空气量,根据SO2 含量控制石灰石加入量,根据NOX 含量控制燃烧温度。降低床底渣含碳量,粗粒子在浓相床内的停留时间: Hb 静止床料高度,m;Fd 布风板面积,m2;ρb--静止床料的堆积密度,kg/m3; 为燃煤消耗量,kg/h;δ为燃煤中粗粒子的份额。通过试验和实际运行可以高热值煤的停留时间比低热值煤长很多,这就是 CFB 锅炉烧低热值煤床底渣含碳量高的原因。故需 要维持合理燃烧温度,适当提高料层厚度。制备合适粒度及大小分布的燃煤,防止燃烧分 层,并注意在烧低热值煤的时候,减少一次风的使用,降低流化的速度。降低排烟温度,减少排烟热损失,影响排烟损失的因素有:排烟温度,包括尾部烟道 受热面积灰,烟气含尘量大;过剩空气系数大。而降低排烟温度就可以从提高尾部烟道的 受热面;提高分离器效率,降低烟气含尘量;加强尾部烟道的吹灰效率;合理搭配一二次 风量,在保证流化和燃烧的情况下,尽可能减少风的使用。1.3循环流化床锅炉节能改造技术 加装燃油,经燃油节能器处理之碳氢化合物,分子结构发生变化,细小分子增 多,分子间距离增大,燃料的粘度下降,结果使燃料油在燃烧前之雾化、细化程度 大为提高,喷到燃烧室内在低氧条件下得到充分燃烧,因而燃烧设备之鼓风量可以 减少 15%至 20%,避免烟道中带走之热量,烟道温度下降 10。燃烧设备之燃油经节能器处理后,由于燃烧效率提高,故可节油 4.87%至 6.10%,并且明显看 到火焰明亮耀眼,黑烟消失,炉膛清晰透明。彻底清除燃烧油咀之结焦现象,并防 止再结焦。解除因燃料得不到充分燃烧而炉膛壁积残渣现象,达到环保节能效果。大大减少燃烧设备排放的废气对空气之污染,废气中一氧化碳(CO)、氧化氮(NOx)、碳氢化合物(HC)等有害成分大为下降,排出有害废气降低 50%以上。同时,废 30%—40%。安装位置:装在油泵和燃烧室或喷咀之间,环境温度不宜超过 360。安装冷凝型燃气锅炉节能器,燃气锅炉排烟中含有高达 18%的水蒸气,其蕴含 大量的潜热未被利用,排烟温度高,显热损失大。天然气燃烧后仍排放氮氧化物、少量二氧化硫等污染物。减少燃料消耗是降低成本的最佳途径,冷凝型燃气锅炉节 能器可直接安装在现有锅炉烟道中,回收高温烟气中的能量,减少燃料消耗,经济 效益十分明显,同时水蒸气的凝结吸收烟气中的氮氧化物,二氧化硫等污染物,降 低污染物排放,具有重要的环境保护意义。采用冷凝式余热回收锅炉技术,传统锅炉中,排烟温度一般在 160~250,烟 气中的水蒸汽仍处于过热状态,不可能凝结成液态的水而放出汽化潜热。众所周知,锅炉热效率是以燃料低位发热值计算所得,未考虑燃料高位发热值中汽化潜热的热 损失。因此传统锅炉热效率一般只能达到 87%~91%。而冷凝式余热回收锅炉,它 把排烟温度降低到 50~70,充分回收了烟气中的显热和水蒸汽的凝结潜热,提升 了热效率;冷凝水还可以回收利用。锅炉尾部采用热管余热回收技术,余热是在一定经济技术条件下,在能源利用 设备中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热、冷却 介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和 废料余热以及高压流体余压等七种。根据调查,各行业的余热总资源约占其燃料消 耗总量的 17%~67%,可回收利用的余热资源约为余热总资源的 60%。1.4 循环流化床的脱硫脱硝技术 烟气脱硫是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫 污染的最为有效的和主要的技术手段。目前,世界上各国对烟气脱硫都非常重视,已开发了数十种行之有效的脱硫技 术,但是,其基本原理都是以一种碱性物质作为 SO 的吸收剂,即脱硫剂。按脱硫剂的种类划分,烟气脱硫技术可分为如下几种方法。MgO为基础的镁法; 为基础的氨法;(5)以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例近90%。烟气脱硫装置相对占有率最大的国家是日本。日本的燃煤和燃油锅炉基本上都 装有烟气脱硫装置。众所周知,日本的煤资源和石油资源都很缺乏,也没有石膏资 源,而其石灰石资源却极为丰富。因此,FGD 的石膏产品在日本得到广泛的应用。这便是钙法在日本得到广泛应用的原因。因此,其他发达国家的火电厂锅炉烟气脱 硫装置多数是由日本技术商提供的。在美国,镁法和钠法得到了较深入的研究,但实践证明,它们都不如钙法。在我国,氨法具有很好的发展土壤。我国是一个粮食大国,也是化肥大国。氮 肥以合成氨计,我国的需求量目前达到 33Mt/a(百万吨/年),其中近45%是由小型 氮肥厂生产的,而且这些小氮肥厂的分布很广,每个县基本上都有氮肥厂。因此,每个电厂周围 100km 内,都能找到可以提供合成氨的氮肥厂,SO 吸收剂的供应很丰富。更有意义的是,氨法的产品本身就是化肥,就有很好的应用价值。在电力界,尤其是脱硫界,还有两种分类方法,一种方法将脱硫技术根据脱硫 过程是否有水参与及脱硫产物的干湿状态分为湿法、干法和半干(半湿)法。另一 种分类方法是以脱硫产物的用途为根据,分为抛弃法和回收法。在我国,抛弃法多 的工艺。氨法脱硫工艺具有很多别的工艺所没有的特点。氨是一种良好的碱性吸收剂:从吸收化学机理上分析,SO 的吸收是酸碱中和反应,吸收剂碱性越强,越利于吸收,氨的碱性强于钙基吸收剂;而且从吸收物理机理上分析,钙基吸收剂 吸收 SO 是一种气-固反应,反映速率慢,反应完全,吸收剂利用率高,可以做到很高的脱硫效率。同时相对钙基脱硫工艺来说系统简单,设备体积小,能耗低。另 外,其脱硫副产品硫酸铵在某些特定地区是一种农用肥料,副产品的销售收入能降 低一部分因吸收剂价格高造成的高成本。氨法脱硫工艺主要由两部分反应组成:吸收过程,烟气经过吸收塔,其中的 SO 被吸收液吸收,并生成亚硫酸铵与硫酸氢铵;中和结晶,由吸收产生的高浓度亚硫酸铵与 硫酸氢铵吸收液,先经灰渣过滤器滤去烟尘,再在结晶反应器中与氨起中和反应,同时用水间接搅拌冷却,使亚硫酸铵结晶析出。燃烧脱硫+ 尾部增湿活化(半干法),燃烧脱硫+尾部增湿活化系指循环流化 床炉内加入石灰石进行燃烧脱硫,然后利用炉内未完全反应的脱硫剂(石灰),在 锅炉尾部烟道喷入水或水蒸汽,适当降低烟气温度(高于烟气绝热饱和温度),尾 部进一步进行烟气脱硫。脱硫产物呈现干态固体物,易于处理,没有污水处理及腐蚀等问题。该脱硫工艺适合与静电除尘器或布袋除尘器配套。降低 排放主要技术措施改变燃烧条件:包括低过量空气燃烧法,空气分级燃烧法,燃料分级燃烧法,烟气再循环法。炉膛喷射脱硝:包括喷氨及尿素,喷入水蒸汽,喷入二次燃料。烟 气脱硝:干法脱硝,(烟气催化脱硝,电子束照射烟气脱硝)湿法脱硝。而在燃烧上: 凡通过改变燃烧条件来控制燃烧关键参数,以抑制生成或破坏已生成的 达到减少排放的技术称为低 燃烧技术是采用最广、相对简单、经济并且是有效的方法低过量空气燃烧、空气分级燃烧、燃料分级燃烧、烟气再循环。低过量空气燃烧:使燃烧过程尽可能地在接近理论空气量的条件下进行,随着 烟气中过量氧的减少,可以抑制 含量的关系如图显示,不过炉内氧的浓度过低,低于 3%以下时,会造成 CO 浓度的急剧增加,从而大 大增加化学未完全燃烧热损失。同时,也会引起飞灰含碳量的增加,燃烧效率将会 降低;此外,低氧浓度会使炉膛内的某些地区成为还原性气氛,从而降低灰熔点,引起炉壁结渣与腐蚀。空气分级燃烧:基本原理——将燃料的燃烧过程分阶段完成一级燃烧:将供入 炉膛的空气量减少到总燃烧空气量的 70%~75%,使燃料先在缺氧的富燃料燃烧条件 下燃烧。过量空气系数 a<1,降低了燃烧区内的燃烧速度和温度水平,而且在还原 性气氛中降低了生成 的反应率,抑制了NOx 的生成量。二级燃烧:其余空气与 一级燃烧区产生的烟气混合,在 的条件下完成全部燃烧过程。炉膛喷射脱硝:向炉膛喷射某种物质来还原已生成的 放量。包括喷水、喷射二次燃料和喷氨等。

1、喷水法,但一氧化氮氧化较困难,需喷入臭氧或高锰酸钾,不现实。

2、喷二次燃料:即前述燃料分级燃烧,但二次燃料 不会仅选择 反应,还会与氧气反应,使烟气温度上升

3、喷氨法(尿素等氨基 还原剂)4NH 反应,而一般不和氧反应,这种方法亦称选择性非催化剂吸收(SNCR)法。但不用催化剂,氨还原 ~1050这一狭窄范围内进行,故喷氨点应选择在炉膛上部对应位置。采用炉膛喷射脱硝,喷射点必须在 950 ~1050之间。喷入的氨与烟气良好混合 是保证脱硝还原反应充分进行、使用最少量氨达到最好效果的重要条件。若喷入的 氨未充分反应,则泄漏的氨会到锅炉炉尾部受热面,不仅使烟气飞灰容易沉积在受 热面,且烟气中氨遇到三氧化硫会生成硫酸氨(粘性,易堵塞空气预热器,并有腐蚀危险)。炉内喷氨脱硝优缺点:非催化喷氨脱硝法投资少,运行费用也低.但反应 温度范围狭窄;要有良好的混合及反应空间和反应时间的条件;当要求较高的脱除 率时,会造成 NH 泄漏量过大等问题。10 循环流化床锅炉分离器2.1 分离器简介 循环流化床(CFB)锅炉要求达到的一系列技术参数,如:循环倍率、燃烧效率、脱琉 效率、床温床压以及对燃料的适应性等,都必须通过气固分离器的可靠性和高效率来实现。目前,我国多采用旋风分离器作气固分离,因为它结构简单,制造技术比较成熟,运行人 员也比较熟悉。但多年运行经验表明,旋风分离器用于CFB 锅炉主要存在的问题有:保 温材料耐高温和耐磨能力不强,造成旋风分离器内衬磨损严重;常压CFB 锅炉虽规程上 不允许有后燃现象,但实际运行中,旋风分离器内经常出现后燃现象,甚至将分离器自身 烧坏;对增压CFB 锅炉,因其出口烟气将送到燃气轮机作功,为了燃尽CO 象并非不允许,这对旋风分离器的材料将提出更高的要求;保温材料的热惯性很大,导致启停时间延长,负荷变化适应能力低;旋风分离器自身体积大,不利于CFB 锅炉大型化,超大的体积将给锅炉带来许多不易解决的问题等。气固分离器分离煤燃烧后产物和脱硫剂脱琉后产物的固体颗粒。这两种颗粒的粒度分 布不同于入炉煤和入炉石灰石的粒度分布。完全只根据入炉煤粒度分布来选择气固分离器 已不甚合理,制造厂按自身习惯,将用于一般煤粉炉的传统产品选作CFB 锅炉的气固分 离器则问题会更多。下面介绍几种国内外气固分离器,并提出CFB 锅炉如何选用气固分离器的个人看法。2.2 炉膛出口几何结构 清华大学做了个试验,图2-1 为试验系统示意图。主床面积90mm90mm,有效高 5.25m;试验物料为树脂,其平均粒径为500m,物料真实密度1400kg/m,终端速度2.7m/s。图1-2 表示试验中采用3 种典型的出口几何结构。H 指凸起部分高度(m)。ehit表示炉膛出口面积为44mm88mm,循环颗粒流率为8.46g/m s。光滑形出口如图2-2a 所示,炉膛出口的固体颗粒,由于导向板的作用随着变向气流而进入水平烟道,在出口附近的颗粒密度保持不变。平直出口结构如图2-2b 所示,气固两相流中的 固体颗粒一部分随气流离开炉膛,另一部分在与炉顶碰撞后,将沿炉膛内壁碰回并下降,在内壁面附近形成下降的颗粒层在炉膛内循环,它们不进入气固分离器。当采用图2-2c 的出口结构时,凸起高度在炉膛顶部形成一个空腔。部分颗粒在向上运动过程中由于惯性 而从炉膛进入此空腔,在空腔内密集起来形成一个较浓的区域。聚集的颗粒沿内壁回落称 之为空腔效应,形成的颗粒在炉膛内循环。与光滑出口相比,实际上减少了气固分离器的 负荷。试验的目的是要最大地增加这一炉膛内循环量。上述炉膛内循环量与图2-2c 值有关。如凸起高度(H)小于颗粒惯性能达到的最大高度,则空腔内上升的颗粒将与炉顶相碰撞,碰撞后的颗粒将沿炉膛内壁落下,称之为碰 撞效应。也和空腔效应一样,将导致炉膛顶部密度增加。如果H 大于颗粒所能达到的最 大高度时,则顶部密度不再增加。图2-3 为炉膛出口几何结构对流化床炉膛密度分布的影 响。这种现象不仅可减少流向气固分离器的颗粒量,还有利于增强气固两相的混合。从图 2-3 可看出,H 增至0.15m,两条曲线的距离大于H=0.15m和H=0.35m 之间 的间距。也就是说空腔和碰撞的综合效应并非与H 成正比增加。对CFB 锅炉,H 实际取 0.5m 即可,即将炉顶升高0.5m 就够了。12 2-3 2-4 取H=0.5m,用采样探头法,按各种流率G 测得炉膛顶部的分离效率η,如图2-4所示。该试验仍在A ehit =44mm88mm =5.14m/s下进行。从图2-4 可看出:(1)当H 在0.3~0.4m 之间,3 根曲线都趋向饱和;(2)随着G 可达70%。这说明出13 口结构作为初级内分离具有很大的应用价值,而且炉顶提高仅0.5m,无论是新建或旧 炉改造都不会花太多的钱。这里要说明的是,η 并非全炉的效率,也不是气固分离器的效 系指炉膛内测出下降颗粒量与上升颗粒量之比。改变炉顶几何结构这一措施除减少炉膛后气固分离器负荷外,还有利于减轻旋风分离器和尾部受热面的磨损。2.3 槽形分离器 槽形分离器属撞击式分离器。图2-5 为埃宾斯别尔格电厂的CFB 锅炉系统图。2-5 CFB 9.10.11.L 12.13.14.15.16.17.18.埃宾斯别尔格电厂的CFB 锅炉210t/h,510和10.6MPa,满负荷时烟气流速6m /s。槽形分离器的槽形部件交错排列,它们被悬挂在炉膛出口后的炉顶,对烟气和固体 颗粒的通道形成迷宫,如图2-6 所示。两排一次除尘器布置在水平烟道入口处,部分固体 颗粒撞击槽形部件后沿槽板下落,收集来的灰粒沿后墙返回如图2-5 由水平烟道中另一排分离器(图2-5之10)收集的固体颗粒进入灰斗,见图2-6 之3,再经 阀(亦称J阀)即图2-5 之11,返回下部炉膛。14 2-6 经槽形分离器仍未分离出而进入竖井的固体颗粒,通过布置在省煤器和空气预热器之间的多管式除尘器分离后的灰尘收集在灰斗内,再用气力输送设备从图2-5 之13 部输送到下部炉膛,多余的灰从灰斗经排灰阀(16)排入专用容器。槽形分离器除对比于旋风分离器结构上可降低CFB 锅炉的高度外,还有以下优点:(1)由于分离器的阻力小,风压损失较小,下部炉膛的气流扩散密度甚低,因而减少 了厂用电。经测试,风压可降低25%,经计算300t/h 的CFB 锅炉,可降低锅炉厂用电 的15%。(2)炉膛内的颗粒分离,强化了颗粒内部的再循环,促使沿炉膛高度的浓度变化较均(3)借助于L阀颗粒一次回收,炉膛内颗粒质量含量的调节范围增大。(4)新分离器的结构能采用新型耐热材料,由于其热容量小,对加快启停和负荷变化 的反应均较快速。(5)由于配套采用了低温高效小直径的多管式除尘器,能分离颗粒直径小的灰尘,改 善炉膛的热交换、燃烧条件和吸附剂的利用。(6)国外CFB 锅炉多采用外置式灰热交换器以回收灰渣的物理热,并对负荷及床温进 行快速控制和调节,故外置式热交换器是形成CFB 锅炉的重要设备。

第二篇:循环流化床锅炉锅炉

循环流化床锅炉锅炉 烘炉、煮炉及试运行方案

循环流化床锅炉锅炉烘炉、煮炉及试运行方案

目录

一、烘炉

二、煮炉

三、漏风试验

四、冲管

五、蒸汽严密性试验

六、安全阀调整

七、试运行

前言

锅炉本体安装结束,进入烘煮炉阶段亦即锅炉已基本进入了最后的调试阶段。为确保锅炉调试顺利进行,并确保锅炉将来的运行质量,特制定此方案,供调试中参照执行。同时,建设单位及安装单位会同锅炉厂及其他协作单位,成立锅炉启动验收小组负责锅炉的启动、调试、试运行的组织领导工作。以保证政令贯通,各工种职责分明,相互协作,相互配合,确保启动调试工作的顺利进行。确保锅炉如期顺利、优质的竣工投产。

一、烘 炉

1、烘炉的:目的:

由于新安装的锅炉,在炉墙材料中及砌筑过程中吸收了大量的水份,如与高温烟气接触,则炉墙中含有的水份因为温差过大,急剧蒸发,产生大量的蒸汽,进二由于蒸汽的急剧膨胀,使炉墙变形、开裂。所以,新安装的锅炉在正式投产前,必须对炉墙进行缓慢烘炉,使炉墙中的水份缓慢逸出,确

保炉墙热态运行的质量。

2、烘炉应具备的条件:

2.1、锅炉管路已全部安装完毕,水压试验合格。2.

2、炉墙砌筑及保温工作已全部结束,并已验收合格。

2.3、烟风道都已安装完毕,保温结束,送引风机均已安装调试合格,能投入运行。

2.4、烘炉所需的热工电气仪表均已安装,并校验合格。2.

5、已安规定要求,在过热器中部两侧放臵了灰浆拌。

2.6、烘炉用的木柴、柴油、煤碳及各种工具(包括检查、现场照明等)都已准备完毕。

2.7、烘炉用的设施全部安装好,并将与烘炉无关的其它临时设施全部拆除,场地清理干净。

2.8、烘炉人员都已经过培训合格,并排列值班表,按要求,准时到岗。

3、烘 炉工艺:(1).根据本锅炉的结构特点可采用火焰烘炉方法。

①在燃烧室中部堆架要柴,点燃后使火焰保持在中央,利用自然通风保小火,燃烧维持2~3天,火势由弱逐步加大。

②第一天炉膛出口排烟温度应低于50℃,以后每天温升不超过20℃,未期最高温度<220℃,保温2~3天。

③烘炉后期约7~12天改为燃油烘炉,点燃油枪前必须启动送引风机。保持炉膛燃烧室负压要求。

④烘炉时间以14~16天,结束燃烧停炉。

⑤所有烟温均以过热器后的烟温为准。

⑥操作人员每隔2小时记录一次烟温,严格按要求控制烟温确保烘炉质量。

(2)、烘炉的具体操作:

①关闭汽包两侧人孔门。

②用除盐水经冷水系统向汽包内进水,并轮流打开各排污阀门疏水、排污、冲洗锅炉受热面及汽水系统和各阀门。

③有炉水取样装臵,取炉水样分析,确认水质达标后,停止冲洗关闭各疏水、排污阀门。

④向汽包内缓慢送水,水位控制标准水位±20mm。

⑤烘炉前,应适当打开各灰门和各炉门,以便及时排除炉内的潮气。

⑥在燃烧室中央堆好木材,在木材上浇上柴油点火,用木材要求烘炉2—3天,烘炉时,可适当开启送风机,增大进风量,以维持一定的炉温,保证烟温,确保将炉墙烘干。

⑦木材烘炉结束,可按要求进行油烘炉,此时,应增加送风机开度,微开引风机,关闭炉门、灰门,进一步提高烟温,烘干炉墙。

⑧定期检查各膨胀指示器、水位计,确保锅炉运行正常,如有异常发现,应及时汇报,妥善处理。

⑨定期定时检查,记录烟温,确保烘炉质量。

⑩由灰浆放样处取样,进行含水率分析,当灰浆含水率≤7%时,表明烘炉已达要求,后期可转入加药煮炉阶段。(烘炉曲线图附后)。3.烘炉注意事项:

①烘炉时,不得用烈火烘烤,温度的升速应缓慢均匀,要求最大升温速度小于20℃/天。

②烘炉过程中要定期检查汽包水位,使之经常保持在正常范围。

③烘炉中炉膛内的燃烧火焰要均匀,不能集中于一处。

④烘炉过程中可用事故放水门,保持汽包水位,避免杂物进入过热器内。

⑤烘炉过程中要定时记录烟气温度,以控制温升速度和最高温度,不超过规定要求。

二.煮炉 1.煮炉的目的:

由于新安装的锅炉其受热面管系集箱及汽包的内壁上油锈等污染物,若在运行前不进行处理的话,就会部分附在管壁形成硬的附着物,导致受热面的导热系数减少。从而影响锅炉的热效率,另一部分则会溶解于水中影响蒸汽的品质,危害汽轮机的安全运行,根据《电力建设施工及验收技术规范》(锅炉机组篇)工作压力小于9.8Mpa的汽包锅炉,可不进行化学清洗,而进行碱煮炉。

2.煮炉已具备的条件:

①烘炉后期耐火砖灰浆样含水率小于7% ②加药、取样管路及机械已全部安装结束并已调试合格。

③化学水处理及煮炉的药品已全部准备。

④锅炉的各传动设备(包括厂房内的照明设施)均处于正常投运状态,⑤锅炉、化学分析等各部分的操作人员均已全部到岗。3.煮炉工艺:

1)烘炉后期,灰浆样含水率小于7%,用排污将水位降到中心线以下150mm.2)NaOH 160KG,NaPO4 160KG混合配成20%的药液由加药泵打入锅炉内。3)开启给水旁路门,向炉内送水,控制水位在中心线以上 130mm,停止进水,关闭给水旁路门,开启再循环门,进行煮炉。

(2)煮炉共分3期:

第一期:1)再次检查锅炉辅机及各设备,处于启动状态,开启给煤机,引风机,送风机等,适当调整风量。

2)向锅炉预备好燃料点火升压,当压力升到1Kgf/cm2,敞开过热器疏水门,并冲洗就近水位计一只。

3)再次缓慢升压到4Kgf/cm2,要求安装人员对所有管道、阀门作全面检查,并拧紧螺栓,在4Kgf/cm2下煮炉8~12小时,排汽量为10%额定蒸发量。化验遇每隔4小时取样分析一次,并将分析结果通知运行有员。4)根据现场确定全面排污一次的排污量和排污时间,排污时要严密监视水位,力求稳定,严防水循环破坏,并做好水位记录。

5)在第一期煮炉中,要求水位保持在+130mm下运行,运行人员对烟温、烟压、温度、水位及膨胀指示值等表计每小时抄表一次。

第二期:1)再次缓慢升压到达25 Kgf/cm2,然后对各仪表管路进行冲洗。在25 Kgf/cm2压力下煮炉10~12小时,排汽量为5%左右额定蒸发量。2)运行值班人员应严格控制水位在+160 mm,并每隔2小时校对上下水位计一次,做好记录。

3)化验人员每隔断2小时取炉水验一次,炉水碱度不得低于45mgN/L,否则应加药液。同时根据经验通知,全面定期排污一次,在排污中要严格控制水位,要求水位波动小,并做好排污记录。

4)在25Kgf/cm2压力下运行,测试各风机出力及总风压,并做好记录,同时要求运行人员应对汽压、水位、烟温进行调节、监视,必要时可用过热器疏水调节。

第III期:1)缓慢升压到32Kgf/cm2稳定燃烧,控制水位+160mm,汽温380℃~400℃,在此压力下运行12~24小时。

2)打开给水旁路门,来控制其进水量,然后采用连续进水及放水的方式进行换水。

3)根据化验员通知,适当打开排污阀,同时派专人监视汽包水位并及时联系。

4)化验人员每隔1小时取样分析一次,并作好详细记录,当炉水碱度在规定范围内(一般≤18 mgN/L)时,可停止换水,结束煮炉。

(3)煮炉注意事项:

1)加药前炉水应在低水位,煮炉中应保持汽包最高水位,但严禁药液进入过热器内。

2)煮炉时,每次排污的时间一般不超过半分钟,以防止破坏水循环。3)在煮炉中期结束时,应对灰浆进行分析,一般第I其他结束,灰浆样含水率应降到4~5%,在第II期结束应到2。5%以下,若没达到,可适当延长煮炉时间,确保灰浆含水率达到要求。

4)运行人员及化验人员必须严格按规范操作,并做好详细记录。4.煮炉以后

1)煮炉结束,锅炉停炉放水后应打开汽包仔细彻底清理汽包内附着物和残渣。

2)电厂化验人员及调试人员应会同安装单位人员检查汽包内壁,要求汽包内壁无锈蚀、油污,并有一层磷酸钠盐保护膜形成。

三 漏风试验

1、漏风试验的目的:

检查锅炉炉墙及空气流通通道的密封性。

2、试验时间:

在煮炉结束后再次点炉进行整套试运行前。

3、试验方法:

采用干石灰喷流及蜡烛试风。

4、操作方法:

1)煮炉结束后,待炉适当冷却。

2)开启鼓风机,并在进风口加入干石灰,让其随同锅炉进风进入整个锅炉,微开引风机,保持炉膛正压。

3)将锅炉分成若干部位,主要包括炉膛、空预器、烟风道等,指定若干班组,检查各部位漏风情况。

4)若发现有白石灰渗出,则该部位漏风,应做好标记,待试验停止后,再行修复。对某一部位若有怀疑,则可点燃蜡烛进行测风,以确定该部位是否漏风。

5)漏风的各处应做好标记,并做好记录,在试验结束后检修。

5、试验的合格要求:

在炉膛正压的情况下,各被检查部位不漏风。四 冲管

1、冲管的目的:

冲管是利用具有一定压力的蒸汽吹扫过热器、主蒸汽管道,并将这部分蒸汽排向大气,通过蒸汽吹扫,将管内的铁锈、灰尘油污等杂物除掉,避免这些杂物对锅炉、汽机安全运行造成危害。

2、冲管的参数方式:

本次冲管压力采用3MPA,流量不低于45T/H,温度380---420℃,蒸汽冲管分两期,第一期6---8次,第二期6---8次,冲管方式采用降压冲管。

3、冲管前的准备工作

1)煮炉结束,验收合格,关闭汽包阀门,调整进水操作,关闭再循环门。2)启动给水泵,微开给水旁路门,冲洗汽包内残余化学药品,然后排污,其排污量由化学分析决定。

3)炉水取样分析,当水质达到要求时,停止冲洗。

4)将主蒸汽管道从母管隔离门前安装临时管道,接到主厂房外面,并在临时管道口安装“靶板”,靶板暂时可不安装上。5)冲管管路:

锅炉高温过热器出口集箱----电动截止门-----主汽门前电动截止门----主蒸汽管路---临时排汽管路排出。

4、冲管操作程序:

1)向汽包里进水到-50MM,然后点火,缓慢升压。2)当压力升到0.5Kgf/cm2时,冲洗水位计并关闭空气门。

3)当压力升到2---3Kgf/cm2时调整水位在+20MM,进行全面排污一次 4)试冲管三次,汽压在6—8Kgf/cm2。

5)缓慢升压,调整风量和煤量,严格控制烟温,当压力升到32KGF/CM2时,控制汽温380---420,打开过热器出口门,蒸汽流量应大于45T/H,采用降压式冲管。连续冲管

6---8次,每次冲管时间5MIN,间隔0。5---1 HOUR,以便冷却主蒸汽管,使铁锈松脆。

6)停炉冷却8---12HOURS以上,待过热器冷却。7)以照上述冲洗程序6---8次。

8)然后,将管道出口装上“铝靶”,其宽度为排汽管内径的8%,长度纵贯内径。

9)依冲管程序再冲管3—4次。

10)关闭给煤机、鼓、引风机,取出铝板,甲、乙双方有关人员检查,铝板表面有无斑点,决定冲管是否合格,并做好记录。

5、注意事项及合格标准:

1)所用临时管的截面积应大于或等于被冲洗管的截面积,临时管应尽量短,以减少阻力。

2)临时管应引到室外,并加明显标记,管口应朝上倾斜,保证安全,放临时管时应具有牢固的支承承受其排空反作用力。

3冲管前锅炉点火升压过程中,应按锅炉正常点火升压过程的要求严格控制升压、升温速度。

4)冲洗过程 中,要严格控制汽包水位的变化,尤其在冲管开始前,将汽

包水位调整到比正常水位稍低,防止冲管时水位升高而造成蒸汽带水。5)连续两次更换铝板检查,铝板上冲击斑痕粒度≤0。8MM,且肉眼可见凹坑不多于8点即冲管合格。

五、蒸汽严密性试验

蒸汽严密性试验是锅炉按运行操作规程点火升压到工作压力,进行严密性试验用以检验锅炉及附件热状态下(即工作压力)严密性的试验。

1、试验中注意事项:

(1)锅炉严格按操作规程点火升压到工作压力。

(2)重点检查锅炉的焊口、人孔和法兰等的严密性。

(3)重点检查锅炉附件和全部汽水阀门的严密性。

(4)重点检查汽包,联箱各热面部件和锅炉范围内的汽水管路的膨胀情况及其支座、吊杆和弹簧的受力,位移和伸缩情况是否正常,是否有妨碍膨之处。

5)试验过程中,应确定一些部件进行测定,对水冷壁、过热器等壁温进行一次测量了解,有无管壁超温现象。2。严密性试验的缺陷处理:

1)对壁温有超温的,对管壁 的保温要重新处理到无超温为止。2)检查中如泄漏,轻微处难以发现和判断的,可用一块温度较低的玻璃或光谱的铁片等物靠近检查,若有泄漏,待降压后处理。

3)蒸汽严密性试验无泄漏为合格,合格后应做好记录,并做好签证。

六 安全阀调整

蒸汽严密性试验后,可对各安全阀进行调整。调整安全阀的压力以就近

压力表为准,压力表经校验合格并有记录,在调整值附近若>0.5%,应做误差修正。

1、本锅炉安全阀动作压力和回座压力差如下:

动作压力:1)汽包工作安全阀:1.06*5.82=6.17 2)汽包控制安全阀:1.04*5.82=6.05 3)过热器安全阀: 1.04*5.29=5.5 回座压力差:安全阀的回座压力差为以上运行压力的4%---7% 1)汽包工作安全阀:0.247---0.432 2)汽包控制安全阀:0.242---0.424 3)过热器安全阀: 0.22---0.385

2、安全阀调整前的准备工作:

1)安全阀在安装就位前,应进行解体清洗、检查。2)安全阀内部的锁紧装臵,调试前应拆除。

3)对安全阀的有关支架,排汽管道支架等应仔细检查,所用电动阀应试验一次。

4)所有调整人员应了解安全阀的内部结构和调整安全阀的安全措施,进行组织分工,并做好噪声的防护工作。3.调整方法和步骤:

1)为了调节方便,宜采用不带负荷较正安全阀,即安排在冲管后升压阶段调整。

2)升压及检查:

a冲管工作结束后要求运行值班人员,对锅炉机组全面检查,确定无异常

后启动设备。

B升压过程严格控制升压速度,并按操作规程进行。

C.当压力升到0.1 Mpa时,关闭空气阀冲洗水位计一次,压力升到0.4 Mpa时,全面排污一次,压力升到0.5 Mpa时,再次冲洗汽水管道,压力升到2.0 Mpa mpa,要求全面检查锅炉及各设备确无异常时,继续升压,压力升到5.29 Mpa,必须派专人监视水位,再次冲洗汽包水位于计并上下核对,做好记录,压力升到5.8 Mpa 2时,调整向空排汽,检查电动阀是否良好(摇控),然后继续升压,将锅炉蒸汽切换到向空排气,调整风量、给煤量,继续提高汽压,第一个汽包工作安全阀。第二个校汽包控制安全阀,第三个校过热器安全阀。

D.汽包工作安全阀运行压力:6.17Mpa,回座压力差0.247 Mpa——0.432 Mpa,等安全阀动作后,立即减少煤量,开大向空排汽泄压,并记录回座压力,验证是否符合要求,若不符合要求,或达到最大允许值仍末动作,应有立即降压,交付安装人员检查,调整后重新校对。

E.然后校对汽包控制安全阀。动作压力:6.05 Mpa回座压力差0.242 Mpa—0.424 Mpa F.最后校对过热器安全阀,动作压力:5.5 Mpa回座压力差:0.22 Mpa—0.385 Mpa g.`调整过程 中,严格控制汽温、水位变化,汽压控制可由向空排汽来调节排汽量。七、七十二小时试运行

锅炉机组在安装完毕并完成分部试运行后,必须通过72小时整套试运行。

1、试运行的目的:

(1)在正常运行条件下对施工、设计和设备进行考核,检查设备是否有达到规定的出力,各项性能是否符合原设计的要求,同时可检验锅炉安装和制造质量,而且检验所有辅助设备的运行情况,特别是转动机械在运行时有无振动和轴承过热等现象。

(2)锅炉在试运行前,应进行锅炉的热力调整试验。

(I)调整试验的①调整燃烧的燃烧工况;

②检查安装质量,有无漏风、漏水

③找出锅炉额定蒸汽参数和蒸发量达不到的原因

④)确定锅炉效率,获取锅炉在最佳运行方式下的技术经济特性(II)调整试验的内容:

(1)炉膛冷态空气动力场试验,风机及管道性能试验

(2)炉膛吸烟风道漏风试验

(3)安全阀校验及热效率试验 2.锅炉机组启动前应具备的条件:

试运现场的条件:

(1)场地基本平整,消防、交通及人行道路畅通。厂房各层地面应做好粗地面,最好使用正式地面,试运场应有明显标志和分界,危险区应有围栏和警告标记。

(2)试运区的施工脚手架全部拆除,现场清扫干净,保证运行安全操作。

(3)试运区的梯子、步道、栏杆、护板应按设计安装完毕,正式投入使

用。

(4)新扩建部分的排水沟道畅通,沟道及洞盖板齐全。

(5)试运现场具有充足的正式照明,事故照明应能投入正常使用,并备有足够的消防器材。

(6)试运范围的工业、消防及生活用水系统应能投入正常使用,并备有足够的消防器材。

(7)各运行岗位应有正式的通讯联络设施。

2。下列系统中的设备、管道、阀门等安装完毕,保温完成。

(1)锅炉范围内管道、汽水系统、疏放水、放汽系统、加药系统辅助用蒸汽系统、排污系统。3.下列设备经调试合格:

(1)

一、二次风机,引风机经调试接速并符合要求。

(2),热工测量,控制和保护系统的调试已符合点火要求。4,组织机构,人员配备和技术文件准备;

(1),电厂按试运方案措施,配备各岗位的运行人员及实验人员,并有明确的岗位责任制,运行操作人员应培训合格,并能胜任本岗位的运行操作和故障处理。

(2)施工单位应根据试运方案措施要求,配备足够维护检修,并有明确的岗位责任制。维护检修人员应了解所在岗位的设备系统性能。并能再统一指挥下胜任检修工作,不发生设备,人身事故和中断试运工作。

(3)施工单位应备齐参加试运设备系统的安装验收签证和分部试运记录。

(4)编制调整试运方案措施,经试运指挥部审定后,应打印完毕,并分别进行了交底和学习。

(5)运行单位在试运现场挂符合实际的燃烧系统图,热力系统图,调试单位应在试运现场张挂试运,点火,升压等必要的图表。3,锅炉机组启动前的检查与准备

(1)蒸汽系统:主气门经开关试验后关闭,隔绝门及旁路门关闭(指七十 小时试运前),(2给水系统:给水门、给水旁路门及放水门关闭,给水中间门省煤器入口门开启。

(3)减温水系统:减温器手动门开启,电动门关闭。

(4)放水系统:各联箱的排污门,连续排污门门,事故放水门关闭,定期排污总门,连续排污一次门开启。

(5):疏水系统主气门前所有的疏水门及主气门后的疏水门开启。

(6)蒸汽及炉水取样门,炉筒加药门开启,加药门关闭。

(7)炉筒水位计的气门、水门开启、放水门关闭。

(8)所有压力表一次门开启,所有流量表的一次门开启。

(9)空气门开启(给水空气门可关闭),对空排气门开启。2、检查所有的风门开关,并直于下列位臵。

(1)引风机入口挡板经开关试验后关闭,出口挡板开启。

(2)

一、二次风机入口档板经开关试验后关闭,返料器风门关闭。

(3)旋风筒底部放灰门关闭,燃烧室底部放灰门关闭。

3.检查燃烧室、料床、返料器等内部无焦渣及杂物:各部人孔门、检查

门、打焦门及防爆门完整,关闭严密;除灰门开关灵活,臵于关闭状态;除灰门开关灵活,臵于关闭状态;除灰沟畅通;盖板齐全。4.检查除尘器、处于良好的工作状态。

5、检查转动机械、轴承润滑油洁净;油位正常;开启冷却水漳水流正常,地脚螺丝及安全装臵牢固。

6、与有关人员联系,做好下列准备工作:(1)给水值班人员:给水管上水。

(2)热工值班人员:将各仪表及操作装臵臵于工作状态,并负责更换点火热电偶。

(3)燃料值班人员:原煤斗上煤。(4)化学值班人员:化验炉水品质(5)电气值班人员:电器设备送电(6)准备好足够的点火材料,引火烟煤粒度10mm(vr)25%,qdy>5500大卡/公斤为易,及沸腾炉渣(要求可燃物含,<=5%,粒度8mm以下)。

(7)检查点火油栓及供油系统是否正常,点火用轻柴油不小于10吨。

(8)检查与准备工作完成后,即可按规程要求进行锅炉上水。

4、锅炉机组启动方法与步骤:

(1)司炉接到点火命令。按措施要求对锅炉设备进行全面检查,并作号点火准备。

(2)进行炉内彻底清扫清除一切杂物插入 热电偶,热电偶端部埋入料面约100毫米。

(3)在炉底铺设一层0—8毫米的沸腾炉渣,高度约350—400毫米,厚度要均匀。

(4)关闭炉门启动引风机和一次风机,使底料流化。

(5)投入点火油枪,调整油量及点火风门,防止烧到前墙及炉底,控制风室温度小于700℃待料层温度升至450℃时,启动给煤,适当投煤维持床温稳定上升。

(6)当炉温达到900℃左右,将油枪撤除,适当调整给煤机的转速和一次风门控制炉温甾900——950 ℃,燃烧正常后,开启返料风门,使其流化循环,直到进入正常状态。

锅炉的升压操作:

(1)拌随着点火过程,气压在不断上升,当气压上升制0.05——0.1mpa 时,冲洗炉筒水位计,并核对其他水位计指示是符合炉筒水位。

(2)当气压生制0.25——0.35mpa ,关闭炉筒空气门,减温器联箱疏水门。

(3)当气压生制0.25——0.35mpa时,依次进行水冷陛下联想排污放水,注意锅筒水位。在锅炉进水时应关闭炉筒制省煤器入口的再循环.(4)当气压升值0.3MPA时,热紧法兰、人孔及手孔等处的螺丝,并通知仪表冲洗各表管。联系在征得启动小组领导同意后开锅炉主汽门旁路进行暖管、,当压力升至0.6—0.7MPa时全开主汽门,关闭旁路门。

(5)当汽压升至1MPa时,通知热工投入水位表。

(6)当汽压升至2MPa时,稳定压力对锅炉机组进行全面检查,如发现部正常现象,应停止升压,待故障消除后继续升压。

(7)汽压升至2.4MPa时,定期排污一次。

(9)当汽压升至5—5.2MPa,冲洗锅筒水位计,通知化学汉化验汽水品质,并对设备进行全面检查。

5、启动要求及注意事项:

参加运行人员除严格遵守运行及安全操作规程外,特别强调以下各条:

(1)在上水过程中应检查锅筒,联箱的孔门及各部的阀门、法兰、堵头等是否油漏水现象。当发现漏水时应停止上水并进行处理。当锅筒水位升至锅筒水位计的-100mm处,停止上水,以后水位应不变。若水位有明显变化,应查明原因予以消除。

(2)要求整个升温升压过程力求平稳、均匀、并在以下各个阶段检查记录膨胀指示值。

上水前后。

锅筒压力分别达到0.3—0.4、1—1.5、2.0、3.9、5.3MPa时,检查各膨胀情况,如发现有膨胀不正常时,必须查明原因并消除不正常情况后方可继续升压。

(3)锅炉的升压应缓慢:

按规程规定,锅筒锅炉的首次升压应缓慢平稳,控制饱和温升大于50℃/小时,锅筒上下壁温差小于50℃,而该锅炉的特点是升温、升压速度较快,是否能够满足远程要求,目前尚缺乏这方面的运行经验,建议先按以下速度控制待实践后再进行调整。

序号

饱和压力(MPA)时间(分)1.0——0。5

50——60 2.0.5——1

30——40

3.1.0——2。0 30——35 4.2.0——3。03。20——25 5.3.0——5。3 35——40 整个升压过程控制在3——4小时左右,升温速度要均匀,监视和记录,如若达不到上述要求时,亦可参照压火控制燃烧的方法调整升温升压速度。

(4)锅炉的并列应注意:

①并炉时保持主气压力底于蒸汽母管压力0.05——0.1MPA,若锅炉气压高于母管压力时,禁止并炉。

②并列时蒸汽温度应低额直30℃保持较低的水位,燃烧稳定。应注意保持气压、气温等参数,并缓慢增加蒸发量。

③在并列过程中,如引起母管的气温急剧下降时或发生蒸汽管道水冲击时,应立即停止并列,减弱燃烧,加强疏水,待恢复正常后重新并列。

④并列后,应对锅炉机组进行一次全面检查,并将点火到并列过程中的主要操作及新发现的问题。记录在有关的记录簿内。

6、试运行消缺及再次24小时运行。

①锅炉试运行结束,应对运行接断的缺陷(当时无法消除的)分析原因进行消缺。

②消缺后按以上操作程序再进行二十四小时试运行。

③整机试运行合格后,按《火力电厂基本建设工程启动验收规程》办理整套运行签证手续和设备验收移交工作。

④,整套72小时运行结束,应将下列施工技术文件移交甲方。a.全部的安装验收记录、签证、分部试运行(试验)记录。

b.主要设备缺陷及其修改记录或处理意见。c.主要设计缺陷及其修改记录或处理意见。d.主要施工缺陷及其处理意见。e.72小时试运记录。

f.施工未完成项目表及其处理意见。g.72小时试运行总结。

第三篇:循环流化床锅炉题库

循环流化床锅炉知识题库

一、填空:

1、循环流化床锅炉简称CFB锅炉。

*

2、型号YG75-5.29/M12的锅炉,其额定蒸发量75t;其额定蒸汽压力5.29MPa。

3、流体的体积随它所受压力的增加而减小;随温度的升高而增大。4、1工程大气压=9.80665×104Pa。

5、流体的流动性是流体的基本特性。

6、流体是液体和气体的总称。

7、管道产生的阻力损失分为沿程阻力损失和局部阻力损失两种。

8、管道内流体的流动状态分为层流和紊流两种。

9、锅炉受热面表面积灰或结渣,会使管内介质与烟气热交换时的传热量减小,因为灰渣的热导率小。

10、朗肯循环是由等压加热、绝热膨胀、定压凝结放热、等熵压缩四个过程组成。

11、液体在管内流动,管子内径增大时,流速降低。

12、标准状态是指压力为1物理大气压、温度为0℃的状态。

13、比热是指单位质量的物质温度升高1℃所吸收或放出的热量。

14、热电偶分为普通型热电偶和铠装热电偶两种。

15、热电阻温度计是应用金属导体的电阻随温度变化的规律制成的。

16、饱和温度和饱和压力是一一对应的,饱和压力越高,其对应的饱和温度越高。若水温低于水面上压力所对应的饱和温度,这样的水称为不饱和水;若水温高于水面上压力所对应的饱和温度,这样的水称为过热水。

17、水蒸汽凝结放热,其温度保持不变,主要放出汽化潜热。

18、蒸汽锅炉按其用途可分为电站锅炉和工业锅炉。

19、锅炉设备包括本体和辅助设备两大部分。

20、火力发电厂生产过程的三大设备是锅炉、汽轮机和发电机。

*

21、燃料在炉内的四种主要燃烧方式是层状燃烧、悬浮燃烧、旋风燃烧和流化燃烧。

22、煤的成分分析有元素分析和工业分析两种方法。

23、煤的发热量的高低是由碳、氢元素成分决定的。

24、煤的元素分析成分中的可燃元素是碳、氢、硫。

25、根据燃料中的挥发分含量,将电厂用煤划分为无烟煤、烟煤和褐煤。

26、煤灰的熔融性常用三个温度表示它们是变形温度、软化温度、融化温度。在通常情况下控制炉膛出口烟温比变形温度低50-100℃。

27、氢是煤中单位发热量最高的元素,硫是煤中可燃而又有害的元素。

28、灰分是煤中的杂质成分,当其含量高时,煤的发热量降低燃烧效率降低。*

29、发生燃烧必须同时具备三个条件可燃物质、氧化剂和着火热源。

30、单位数量的燃料完全燃烧时所需的空气量称为理论空气量。

31、实际空气量与理论空气量之比值称为过量空气系数。

*

32、煤在炉内的燃烧过程大致可分为三个阶段着火前的准备阶段、燃烧阶段和燃尽阶段。

*

33、所谓锅炉热效率,就是锅炉的有效利用热量占输入锅炉热量的百分数。

34、计算锅炉热效率有两种方法,即正平衡法和反平衡法,火力发电厂一般采用

反平衡法。

35、在室燃炉的各项热损失中排烟热损失是其中最大的一项。

36、与锅炉热效率有关的经济小指标有排烟温度、氧量值(二氧化碳值)、一氧化碳值、飞灰可燃物、炉渣可燃物等。

37、锅炉所用阀门按其用途可分为截止阀、调节阀、逆止阀、减压阀。

38、逆止阀是用来自动防止管道中的介质倒流。

39、截止阀是用于接通和切断管道中的介质。

40、电气除尘器是利用电晕放电,使烟气中的灰粒带电,通过静电作用进行分离的装置。

41、燃煤锅炉的烟气中含有大量的飞灰,若飞灰随烟气直接排入大气将严重污染环境,为此电厂锅炉中都要装设除尘器。

42、发电厂常用的除尘器有湿式除尘器、电气除尘器、陶瓷多管除尘器。

43、电厂的除灰方式分为水力除灰和气力除灰两种。

44、风机按其工作原理分为离心式和轴流式两大类。

45、后弯叶片可以获得较高的效率,噪声也较小;前弯叶片可以获得较高的压力。

46、风机特性的基本参数是流量、风压、功率、效率和转速等。

47、如果风机故障跳闸,而在跳闸后未见异常,应重合闸一次。

48、离心泵启动前,应关闭出口门,开启入口门。

49、锅炉水循环可分为自然循环和强制循环。

*50、在自然循环锅炉中,蒸发设备是由汽包、水冷壁管、下降管、联箱所组成。其中汽包和下降管不受热。

51、循环流速是表示自然循环的可靠性的主要特性参数。

52、自然循环锅炉的主要故障:上升管中工质产生循环停滞、循环倒流和汽水分层下降管带汽等。

53、蒸汽中杂质主要来源于给水,是以机械携带和选择性携带两种方式进入蒸汽中。

*

54、锅炉的水处理分为锅内水处理和锅外水处理。

55、锅炉负荷增加,蒸汽温度增加。

*

56、锅炉排污分为连续排污和定期排污两种。

57、锅炉的排污率是指排污量占锅炉蒸发量的百分数。

58、影响汽包内饱和蒸汽带水的主要因素有锅炉负荷、蒸汽压力、蒸汽空间高度和炉水含盐量。

*

59、根据换热方式,过热器分为对流式过热器、辐射式过热器和半辐射式过热器。

60、对流过热器按烟气与蒸汽的流动方式可分为顺流、逆流、双逆流和混流。61、热偏差产生的原因是工质侧的流量不均和烟气侧的热力不均。62、对流过热器的汽温

论文题目 循环流化床锅炉旋风分离器分析循环流化床锅炉旋风分离器分析

第一篇:论文题目 循环流化床锅炉旋风分离器分析循环流化床锅炉旋风分离器分析 自循环流化床燃烧技术出现以来,循环床锅炉在世界范...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部