电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

线性代数习题答案

栏目:合同范文发布:2025-01-28浏览:1收藏

线性代数习题答案

第一篇:线性代数习题答案

综合练习一01AA.01BB、C.01CA.01DA.01Er2,s5,t8或r5,s8,t2或r8,s2,t5.01Fi2,j1.01G12.01Ha13a25a31a42a54;a13a25a32a44a51;a13a25a34a41a52.01I排列的逆序数为k2;当k为偶数时,排列为偶排列,当k为奇数时,排列为奇排列.a11aaa01K(1)1;(2)(aa1222a13a1411a22a33a44);(3)aa21aa23a24a3141a3242a3343a34.44f(x)g(x)s(x)01M48x18.01Nf(x)g(x)s(x).01O1.f(x)g(x)s(x)02AB、D.02B3.02C6.02Dx0,1,2.02E(1)n1(n1)xn.02F(12131)n!.02G(1)n(n1)2nn1(n1)n.2.02H(1)n1(nax)xn1.02I(1)n[(1)nn].03AB.03BD.03CD.03DD.03E12246000.03Fa0,b0.4403G1,3.03Habii03If(x)2x23x1.i1i1ai03Jx4.03L0.03M0.04A(1aa2)(1a)3.04Bn1.04Cx1x2...xn1(1a1x1a2x2...anxn).04Dx1x2...xn[1a(1x1...1.1x2xn)]04E(x1)n..49.04F1(1)a1(1)2a2an1...(1)anan1...a2a1n04G(n1)当a,n1n1当a.05A0.05B1.05C12/5.05D0.05E0.05F0.05G(1)0;(2)144.05H9,18.06An!(n1)!(n2)!...2!1!.06B(cos).4ij1icosj07A(1x)2(10x).08AA、B.08BD.08CC、D.08DD.08E2.08Fa0且bb/4.08Gf(x)2x23x1.08H甲、乙、丙三种化肥各需3千克,5千克,15千克.综合练习二01AB.01BD.01CC.01DC.01ED.01FB.01GD.01HC.01I1/3.01J2.01K0.01La2(a2n).01N(AB)(AB).01S(2)A249(A2E).01T(1)1,(2)n.01U(1)(1)n1n1k2(n1)!.(2)(1)n1n!(k1,2,,n).01V两年后在岗职工668人,培训人员334人.01W即晴天概率为146256,阴天的概率为6248256,下雨天的概率为256.xnx426001X1y023/21/200xn.yn1nyzn101/40zn4236z224012102A4982242.02B2n102420121.02C2220242222.1nn(n1)2.4n14n0002D201n.02En1n142.400001002nn.2n1.0002n.50.10002FA20061.由于A5A.1100003A(1)(1)n11(2)1200n!A.0230.0034(3)A6E.(4)12(EB).(5)B(E2A)1.10103BB510E.03D1211.03C(2)A2A5(A2E).03EA11(A3E).(A4E)11106(AE).03FB1114(5A23AE).03G(EABA)1B(EAB)1B1.03HB1110(A23A4E).03I(EAB)1EA(EBA)1B.10001/21/20003NA1003O1122212.1/21/61/391/85/241/121/422100201003403P000123310005200003Q(A1A2A41A3)1A11A2(A4A3A11A2)1A111(A4A3(A1A2A4A3)4A3A11A2)1.04A(1)8/3;(2)9;(3)81;(4)1/9;(5)1/3;(6)576;(7)3.04B10804F521220101.04GA0A(bTA1),05AD.05C2.05D当a1且b2,r(A)4;当a1且b2时,r(A)2;.51.当a1,b2或a1,b2时,r(A)3.05E当c1,并且a1或b0时,r(A)1;当c1,a1且b0时,r(A)3;当c1,但a1或b0时,r(A)3;当c1,a1且b0时,r(A)2.05F当ab0时,r(A)0;当ab0时,r(A)1;当ab,且a(n1)b0时,r(A)n1;当ab,且a(n1)b0时,r(A)n.05G11n.05Hr[(A*)*]n,如果r(A)n,0,如果r(A)n.1111101005K111105L01041111.11110010.00022400110005M220005N12200022.00120233.003405OA.0211106A1321.06B202.03052231106C43206D22.319/213/2.21112300106E020.06F21001.121012103006G003300..52.综合训练三01AC.01BB.01CB.01Dt1.01Ea2b.01F(1)当t5时,1,2,3线性相关;(2)当t5时,1,2,3线性无关;(3)3122.01G(1)当a1时,1,2,3线性相关;(2)当b2且a1时,可由i唯一的表出:122;当b2且a1时,可由i线性表出:(2t1)1(t2)2t3,其中t是任意常数.02AB.02BC.02C B.02D D.02E t5.02F不能.02G(1)能;(2)不能.02I(1)当a2时,不能用1,2,3线性表出;(2)当a2且a1时,有唯一的表达式:a11(a1a2a2)212a23;当a1时,(1kl)1k2l3,k,l.02J(1)若0且3,可由1,2,3唯一线性表示;(2)若0,可由1,2,3线性表示,但不唯一;(3)若3,不能由1,2,3线性表示.02K(1)当b2时,不能由1,2,3线性表出;(2)当b2,a1时,可唯一表示为122;当b2,a1时,可表示为(2k1)1(k2)2k3()k为任意常数.02L(1)当a1,b0时,不能表示成1,2,3,4的线性组合;(2)当a1时,有唯一表示式:2ba1ab1b1a12a130.402M(1)当a4时,可由1,2,3唯一线性表出..53.(2)当a4时,不能由1,2,3线性表示.(3)当a4且3bc1时,可由1,2,3线性表出,但不唯一:t1(2tb1)2(2b1)3(t为任意常数).02N不等价.03AD.03B1.03Cn.03D(1)R(1,2,3,4)2;向量组的一个极大无关组为2,4;12(24),3234;(2)R(1,2,3,4,5)3;向量组的一个极大无关组为1,3,5;2135,4135;(3)R(1,2,3,4,5)3;向量组的一个极大无关组为1,2,3;4123,5120.3.03ER(1,2,3,4,5)3.03Fa15,b5.04AD.04B(1,0,0,...,0)T.04Ct1.x1y1104D4.04E矩阵xy221的秩小于3.xnyn111422204F(1)C3,(CR);(2)k170k012,(k1,k2R);201523/23/4(3)C13/2C217/40,(C1,C2R).0104G(1)无解;(2)(1/2,2,1/2,0)Tk(1/2,0,1/2,1)T,其中k为任意常数;(3)(514,3314,0,7)Tk(1,1,2,0)T.(k为任意常数);.54.(4)C131(7,177,1,0,0)TC(101911127,7,0,1,0)TC3(7,7,0,0,1)T(2,3,0,0,0)T,(C1,C2,C3R).04H(1)1,2,3是所给方程组的基础解系.(2)1,2,3不是所给方程组的基础解系.104I当1时,有解,解为1k12,其中k为任意常数.0104J(1)当1且45时,方程组有唯一解;1当1时,其通解为1k01,其中k0为任意实数;1当45时,原方程组无解;(2)当2且1时,方程组唯一解;当2时,方程组无解;当1时,方程组有无穷多组解.全部解为21k110k012001,其中k1,k2是任意常数.04K(1)当a0时,方程组无解;x12/a,当a0,b3时,方程组有唯一解:x21,x30;x12/a,当a0,b3时,方程组有无穷多解:x213t,(tR).2x3t.(2)当a0或a0时b4,方程组无解;方程组不可能有唯一解;当a0且b4时,方程组有无穷多解.通解是.55.(6,4,0,0,0)Tk1(2,1,1,0,0)Tk2(2,1,0,1,0)Tk3(6,5,0,0,1)T.其中k1,k2,k3是任意实数.(3)当a1,b36时,方程组无解;当a1,a6时,方程组有唯一解,x(b36)a1,x12(a4)(b36)162a1,xb36230,x4a1;当a1,b36时,方程组有无穷多解,通解为(6,12,0,0)Tk(2,5,0,1)T.k为任意常数;当a6时,方程组有无穷多解,通解是(1(1142b),1(122b),0,1(bT77736))k(2,1,1,0)T.04L(1)当ab,bc,ca时,方程组仅有零解x1x2x30.(2)当abc时,方程组有无穷多组解,全部解为k1(1,1,0)T(k1为任意常数).当acb时,方程组有无穷多组解,全部解为k2(1,0,1)T(k2为任意常数).当bca时,方程组有无穷多组解,全部解为k3(0,1,1)T(k3为任意常数).当abc时,方程组有无穷多组解,全部解为k4(1,1,0)Tk5(1,0,1)T(k4,k5为任意常数).2104M(1)方程组有无穷多组解,通解为41k(k为任意常数502).1(2)当m2,n4,t6时,方程组(I),(II)同解.04Na2,t4.04O非零公共解为t(1,1,1,1)T.(t为任意常数)04P原来至少要有3121个桃子,最后还剩下1020个桃子.05A B.05BC.05CA.05DC.05ED.05FD.05G1.05H1..56.05I(1,2,3,4)Tk(1,1,1,1)T,其中k是任意实数.05J(3,2,0)Tk(1,1,1)T.(k为任意常数)05K通解为(9,1,2,11)Tk1(10,6,11,11)Tk2(8,4,11,11)T05L3m2n.05M2.1/2005N通解为1/21k,其中k为任意常数.011105O(1)1可由2,3,4线性表出.(2)4不能用1,2,3线性表出.x1k2t,06A(2)通解是x2k2,其中t是任意实数.x3t,06B通解是(a8,4,2,1)T12a24a3,a22a3,a3,0)Tk(,其中k是任意实数.06E方程组的唯一解为(ATA)1ATb.06L(II)的通解为c1(a11,a12,...,a1,2n)Tc2(a21,a22,...,a2,2n)T...cn(an1,an2,...,an,2n)T,其中c1,c2,...,cn为任意常数.综合练习四1/21/61/(23)01A45.01B11/221/6;31/(23).0;02/601/(23)3/202A(1)10,22,33,1/2k10对应特征向量为11/2,1.57.1122对应特征向量为k2,013对应特征向量为k331.1(2)18,231,218对应特向量为k11,其中k1为任意非零常数.21231对应特征向量为k201k32,其中k2,k3是不全为10零的实数.(3)101232全部特征向量为k12k20,(k1,k2不全为零).0102BA的特征值是1,2,2a1,a221对应的特征向量依次是k13,k22,k31.(k1,k2,k3全不为0).01a102CA的特征值2(二重)及0,2对应特征向量为k1(0,1,0)Tk2(1,0,1)T.0对应特征向量为k3(1,0,1)T.02D(1)当b0时,A的特征值为12na,则任一非零向量均为其特征向量.(2)当b0时,A的特征值为12n1ab,na(n1)b当1n1ab对应特征向量为1111k1000k21kn100,01.58.1a(n1)b对应特征向量为k1nn,(kn0).102Ea2,b3,c2,01.2n21102F112n212n23n1.112n202GA与B特征值相同但不相似.02Ha7,b2,P15112202I1102.0.101302Ja1,b8,c10.02K(1)|EA|4a34a23a2a1.03AB.03BB.03CA.03D(1)k(2)2i(i1,2,,n);i(i1,2,,n);(3)kii(i1,2,,n);(4)i(i1,2,,n);(5)1(i1,2,,n);(6)|A|1,2,,n);i(ii(7)f(i),(i1,2,,n).03E|A|21.03F1/2.03G2203H4/3.03J(1)0;(2)A的特征值全为零.0对应特征向量为k11k11...kn1n1(k1,k2,...,k3不全为零的任意常数).03L3,2,2.03M(1)P1AP全部特征值是1,12,,n.Pi是P1AP的属于i的特征向量..59.(2)(P1AP)T全部特征值是11,2,,n.PTi是(PAP)T的属于i的特征向量.03P1(n1重),3,1对应特征向量为k1(y2,y1,0,,0)Tk2(y3,0,y1,,0)Tkn1(yn,0,0,,y1)T,k1,k2,,kn1不全为0,3对应特征向量为kn(x1,x2,,xn)T,kn0.04AD.04B546333.76804C(1)a3,b0,1.(2)A不能相似于对角阵.404D当a1时,A1116114.442当a111410222时,A301055.22519132504E(1)3k(1,0,1)T(2)A162102.(k);为任意非零常数521301104F1/201/200004G.1011/201/2.11011104H111.04IAPP1P(2E)P12E.1115404J6333.76804OA的特征值是2与1(n1重)..60.X1(1,1,,1)T是A属于2的特征向量,X2(1,1,0,,0)T,X3(1,0,1,,0)T,,Xn(1,0,0,,1)TA属于1的特征向量.11112n2n2nA111112n2n2n.12n112n12n05A0.05BA能对角化.05CA能对角化.1105D(1)12(2);1;(3)311;21(4)1(5)A2.;不能对角化;(6)20405E令P212100,则11.011021005F(1)T12403212,T1AT010122002.111263(2)T111133263,TAT.01166311123605GP120036,P1AP1.1114236.61.221535305HQ1425353,QTAQ22.705235305Ia1,b3.A能对角化.05J01,a3,b0.A不能相似于对角阵.1105Kxy0.05L111111.05MA~1111.0905N105PA~B.0.00105Q(1)x0,y2;(2)P210.11106An!.06B6.06C(2n3)!.06Dk(k2)2.06FO.06EE.3n13n106G(1)(2)6n13123n123n1;93;(3)10013n123n13n.13n223n23n06Hx10051001.06Ix51003210013.n06Ja1n563,nliman5.06Ka站至多有240只小船,b站至少有80只小船..62.是综合练习五01AB.01BB.01CB.01D3.01E1.00101F010.01Gy21y22y23.10001H(1)fz21z22,相应的线性变换为zPy(P1112P1)x.P1010,P1002013,001001x1(2)z2z22111/2z112z3.相应的线性变换x2x3112z2.001/2z3100(3)f12y2222y3相应的线性变换x1101/21/21y,x101Ix1212y1201Jc3,4y219y22.3122y2x3221y311126301Ka2,b3.xCy,C111263,2106301Lf(x)x2221,x2,x312x2x32x1x22x2x34x1x3.切平面方程为2x1x2x31.02AD.02BA.02CC.02DA.02EC.02F(2,2).02G(1)正定.(2)正定.02H(1)2;(2)1.1012241102I0,P01002NB1314111.114.022.63.综合练习六01A(1)V1是向量空间.(2)V2是向量空间.01B(1)W1不是子空间.(2)W2是子空间.dimW22.(0,1,0),(0,0,1)是W2的一组基.(3)W3是子空间,dimW32.(1,1,0),(2,0,1)是W3的一组基.(4)W4不是子空间.(5)W5不是子空间.01CW1W2是V的子空间,W1W2不一定是V的子空间.T02B5114,14,4,4.02C坐标变换公式为x1111x1x1212x1x2102x2或x32001x2x010x3x3111x3在所给定的两组基下具有相同坐标的全部向量为k32,k3为任意实数.T02D(1)(3,4,4)T;(2)112,5,132.02E(5/21/21,2)(1,2,3)3/23/2.5/25/202F(1,2,2)T时,坐标乘积的极大值是18.002G(1)A110011000110.1011(2)所求非零向量010203k4k4(k为非零任意常数).02H(1)111011;(2)0011(1,0,0)T,2(0,1,0)T,3(0,0,1)T;(3)A11.02I(1,1,,1).3.64.a11a1203Aa21a22a11a12a31a32a2203C(1)a12a32a21a11a31a23a13;a33a12a22a12a32a13a23a13.a3301103B020.210a11a21(2)ka31ka12a22ka32a13a23;ka33a11a21a11a12a21a22(3)a21a31a21a22a31a32aa31a3231a11a12a13a21a22a23a21a22a23a31a32a33a31a32a33.65.

第二篇:线性代数习题答案

习题 三(A类)

1.设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3.解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2)

2.设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α=(4,1,-1,1).求α.解:由3(α1-α)+2(α2+α)=5(α3+α)整理得:α=16163(3α1+2α2-5α3),即α=(6,12,18,24)

=(1,2,3,4)3.(1)×

(2)×

(3)√

(4)×

(5)×

4.判别下列向量组的线性相关性.(1)α1=(2,5), α2=(-1,3);(2)α1=(1,2),α2=(2,3), α3=(4,3);(3)α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);(4)α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1).解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关.5.设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关.证明:设

k11k2(12)k3(123)0,即

(k1k2k3)1(k2k3)2k330.由1,2,3线性无关,有

k1k2k30, k2k30,k0.3所以k1k2k30,即1,12,123线性无关.6.问a为何值时,向量组

1(1,2,3),2(3,1,2),3(2,3,a)

'''线性相关,并将3用1,2线性表示.1312237(5a),当a=5时,3a117解:A231172.7.作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵.解:因向量(1,0,0,0)与(1,0,1,0)和(1,-1,0,0)线性无关, 所以(1,0,0,0)可作为方阵的一个行向量,因(1,0,0,1)与(1,0,1,0),(1,-1,0,0),(1,0,0,110)线性无关,所以(1,0,0,1)可作为方阵的一个行向量.所以方阵可为110100100000.01

8.设1,2,,s的秩为r且其中每个向量都可经1,2,,r线性表出.证明:1,2,,r为1,2,,s的一个极大线性无关组.【证明】若

1,2,,r

(1)线性相关,且不妨设

1,2,,t(t

(2)是(1)的一个极大无关组,则显然(2)是1,2,,s的一个极大无关组,这与1,2,,s的秩为r矛盾,故1,2,,r必线性无关且为1,2,,s的一个极大无关组.9.求向量组1=(1,1,1,k),2=(1,1,k,1),3=(1,2,1,1)的秩和一个极大无关组.【解】把1,2,3按列排成矩阵A,并对其施行初等变换.11A1k11k111200110110100k101k1k01110100k1001k011k10010 10当k=1时,1,2,3的秩为2,1,3为其一极大无关组.当k≠1时,1,2,3线性无关,秩为3,极大无关组为其本身.10.确定向量3(2,a,b),使向量组1(1,1,0),2(1,1,1),3与向量组1=(0,1,1), 2=(1,2,1),3=(1,0,1)的秩相同,且3可由1,2,3线性表出.【解】由于

0A(1,2,3)111B(1,2,3)1012111111001021a0b011021001;02,ba2

而R(A)=2,要使R(A)=R(B)=2,需a2=0,即a=2,又

0c(1,2,3,3)1112110121a0b0210010 ,2ba2a要使3可由1,2,3线性表出,需ba+2=0,故a=2,b=0时满足题设要求,即3=(2,2,0).11.求下列向量组的秩与一个极大线性无关组.(1)α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(1,-3,-4,-7);(2)α1=(6,4,1,-1,2),α2=(1,0,2,3,-4),α3=(1,4,-9,-6,22),α4=(7,1,0,-1,3);

(3)α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α=(2,1,5,6).解:(1)把向量组作为列向量组成矩阵Α,应用初等行变换将Α化为最简形矩阵B,则 111 0 1 4 11 4 11 4 1950 1 2 1 30 9 55A90 1 B

1 5 40 9 590 0 00 0 00 0 03 6 70 18 100 0 05可知:R(Α)=R(B)=2,B的第1,2列线性无关,由于Α的列向量组与B的对应的列向量有相同的线性组合关系,故与B对应的Α的第1,2列线性无关,即α1,α2是该向量组的一个极大无关组.(2)同理, 6 1 1 70-11 55 71 2-9 0 4 0 4 10 8 40 10-11 55 7 1 2-9 01 2-9 00-8 40 11 3-6 10 5-15-10 5-15-1 2 4 22 30 8 40 10 0 0 01 2-9 070 1-5-11450 0 0-11240 0 10 110 0 0 01 2-9 01 0 0 00 1-5 00 1 0 00 0 10 00 0 1 0B0 0 0 10 0 0 10 0 0 00 0 0 0

可知R(Α)=R(B)=4,Α的4个列向量线性无关,即α1,α2,α3,α4是该向量组的极大无关组.(3)同理,1 0 3 1 21 0 3 1 21 0 3 1 21 0 3 1 2-1 3 0-1 10 3 3 0 30 1 1 0 10 1 1 0 1, A2 1 7 2 50 1 1 0 10 0 0-4-40 0 0 1 14 2 14 0 60 2 2-4-20 0 0 0 00 0 0 0可知R(Α)=R(B)=3,取线性无关组α1,α3,α5为该向量组的一个极大无关组.12.求下列向量组的一个极大无关组,并将其余向量用此极大无关组线性表示.(1)α1=(1,1,3,1),α2=(-1,1,-1,3),α3=(5,-2,8,-9),α4=(-1,3,1,7);(2)α1=(1,1,2,3),α2=(1,-1,1,1),α3=(1,3,3,5),α4=(4,-2,5,6),α5=(-3,-1,-5,-7).解:(1)以向量组为列向量组成Α,应用初等行变换化为最简形式.31 0 11-1 5-11-1 5-11-1 5-1271 1-2 30 2-7 470 1-2 20 1-2B, A3-1 8 10 2-7 420 0 0 00 0 0 00 0 0 01 3-9 70 4-14 8 0 0 0 0可知,α1,α2为向量组的一个极大无关组.x1x2537x1x22设α3=x1α1+x2α2,即解得,x1,x2

223x1x28x3x912x1x21x1x23设α4=x3α1+x4α2,即解得,x11,x22

3x1x21x3x712所以a332a172a2,a4a12a2.1 1 1 4-31 1 1 4-31 0 2 1-21-1 3-2-10-2 2-6 20 1-1 3-1B(2)同理, A2 1 3 5-50-1 1-3 10 0 0 0 03 1 5 6-70-2 2-6 20 0 0 0 0可知, α

1、α2可作为Α的一个极大线性无关组,令α3=x1α1+x2αx1x21可得:即x1=2,x2=-1,令α4=x3α1+x4α2, xx312x1x24可得:即x1=1,x2=3,令α5=x5α1+x6α2, x1x22x1x23可得:即x1=-2,x2=-1,所以α3=2α1-αxx1122 α4=α1+3α2,α5=-2α1-α 13.设向量组1,2,,m与1,2,,s秩相同且1,2,,m能经1,2,,s线性表出.证明1,2,,m与1,2,,s等价.【解】设向量组

1,2,,m

(1)与向量组

1,2,,s

(2)的极大线性无关组分别为

1,2,,r

(3)和

1,2,,r

(4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即

riaj1ijj(i1,2,,r).因(4)线性无关,故(3)线性无关的充分必要条件是|aij|≠0,可由(*)解出j(j1,2,,r),即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.14.设向量组α1,α2,…,αs的秩为r1,向量组β1,β2,…,βt的秩为r2,向量组α1,α2,…,αs,β1,β2,…,βt的秩为r3,试证:

max{r1,r2}≤r3≤r1+r2.证明:设αs1,…,Sr1为α1,α2,…,αs的一个极大线性无关组, βt1,βt2,…,t为β1,r2β2,…,βt的一个极大线性无关组.μ1,…,r为α1, α2,…,αs,β1,β2,…,βt的一

3个极大线性无关组,则α

s1,…,S和βt1,…,β

r1tr2

可分别由μ1,…,r线性表示,所

3以,r1≤r3,r2≤r3即max{r1,r2}≤r3,又μ1,…,r可由α

3s1, …,αsr1,βt1,…,βtr2线性表示及线性无关性可知:r3≤r1+r2.15.已知向量组α1=(1,a,a,a)′,α2=(a,1,a,a)′,α3=(a,a,1,a)′,α4=(a,a,a,1)′的秩为3,试确定a的值.解:以向量组为列向量,组成矩阵A,用行初等变换化为最简形式: 1 a a a1 a a a13a a a aa 1 a aa-1 1a 0 00 1-a 0 0 a a 1 aa-1 0 1-a 00 0 1-a 0a a a 1a-1 0 0 1-a0 0 0 1-a由秩A=3.可知a≠1,从而1+3a=0,即a=-

13.16.求下列矩阵的行向量组的一个极大线性无关组.2575(1)75***4204311320;

(2)213448112012130251411.3112【解】(1)矩阵的行向量组的一个极大无关组为1,2,3;

3412(2)矩阵的行向量组的一个极大无关组为1,2,4.3417.集合V1={(x1,x2,,xn)|x1,x2,,xn∈R且x1x2xn=0}是否构成向量空间?为什么? 【解】由(0,0,…,0)∈V1知V1非空,设(x1,x2,,xn)V1,(y1,y2,,yn)V2,kR)则

(x1y1,x2y2,,xnyn)k(kx1,kx2,,kxn).因为

(x1y1)(x2y2)(xnyn)(x1x2xn)(y1y2yn)0, kx1kx2kxnk(x1x2xn)0,所以V1,kV1,故V1是向量空间.18.试证:由1(1,1,0),2(1,0,1),3(0,1,1),生成的向量空间恰为R3.【证明】把1,2,3排成矩阵A=(1,2,3),则

1A101010120, 1所以1,2,3线性无关,故1,2,3是R3的一个基,因而1,2,3生成的向量空间恰为R3.19.求由向量1(1,2,1,0),2(1,1,1,2),3(3,4,3,4),4(1,1,2,1),5(4,5,6,4)所生的向量空间的一组基及其维数.【解】因为矩阵

A(1,2,3,4,5)1210111234341121415006401102320411114130024011003200111043 ,20∴1,2,4是一组基,其维数是3维的.20.设1(1,1,0,0),2(1,0,1,1),1(2,1,3,3),2(0,1,1,1),证明: L(1,2)L(1,2).【解】因为矩阵

A(1,2,1,2)110010112133011001101100230001 ,00由此知向量组1,2与向量组1,2的秩都是2,并且向量组1,2可由向量组1,2线性表出.由习题15知这两向量组等价,从而1,2也可由1,2线性表出.所以

L(1,2)L(1,2).21.在R3中求一个向量,使它在下面两个基

(1)1(1,0,1),(2)1(0,1,1),2(1,0,0)2(1,1,0)3(0,1,1)3(1,0,1)

下有相同的坐标.【解】设在两组基下的坐标均为(x1,x2,x3),即

x1x1(1,2,3)x2(1,2,3)x2,x3x31011000x101x2111x31101x10x21x3

1102101x1x0, 120x3求该齐次线性方程组得通解

x1k,x22k,x33k

(k为任意实数)故

x11x22x33(k,2k,3k).22.验证1(1,1,0),2(2,1,3),3(3,1,2)为R3的一个基,并把1(5,0,7), 2(9,8,13)用这个基线性表示.【解】设

A(1,2,3),B(1,2),又设

1x111x212x313,2x121x222x323, 即

x11(1,2)(1,2,3)x21x31x12x22, x32记作

B=AX.则

1(AB)1010***25079r2r18131002331003420105570019r2r317r2r3132313329作初等行变换134

因有AE,故1,2,3为R3的一个基,且

2(1,2)(1,2,3)3133, 2即

121323,2313223.(B类)

1.A 2.B 3.C 4.D 5.a=2,b=4 6.abc≠0

7.设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(1)α1能否由α2,α3线性表示?证明你的结论.(2)α4能否由α1,α2,α3线性表示?证明你的结论.解:(1)由向量组α1,α2,α3线性相关,知向量组α1, α2, α3的秩小于等于2,而α2, α3, α4线性无关,所以α2, α3线性无关,故α2, α3是α1, α2, α3的极大线性无关组,所以α1能由α2, α3线性表示.(2)不能.若α4可由α1,α2,α3线性表示,而α2,α3是α1,α2,α3的极大线性无关组,所以α4可由α2,α3线性表示.与α2,α3,α4线性无关矛盾.8.若α1,α2,…,αn,αn+1线性相关,但其中任意

n个向量都线性无关,证明:必存在n+1个全不为零的数k1,k2,…,kn,kn+1,使

k1α1+k2α2+…+kn+1αn+1=0.证明:因为α1,α2,…,αn,αk1α1+k2α2+…+kn+1αn+1=0

n+1=0,由任意

n+1线性相关,所以存在不全为零的k1,k2,…,kn,kn+1使若k1=0,则k2α2+…+kn+1αn个向量都性线无关,则k2=…=kn+1=0,矛盾.从k1≠0,同理可知ki≠0,i=2, …,n+1,所以存在n+1个全不为零的数k1,k2,…,kn,kn+1,使k1a1+k2a2+…+kn+1an+1=0.9.设A是n×m矩阵,B是m×n矩阵,其中n<m,E为n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.证明:由第2章知识知,秩A≤n,秩B≤n,可由第2章小结所给矩阵秩的性质,n=秩E≤min{秩A,秩B}≤n,所以秩B=n,所以B的列向量的秩为n,即线性无关.

第三篇:线性代数二次型习题及答案

第六章

二次型

B1与合同.AB22

证:因为A1与B1合同,所以存在可逆矩C1,使B1C1TAC11,1.设方阵A1与B1合同,A2与B2合同,证明T

因为A2与B2合同,所以存在可逆矩C2,使B2C2A2C2.A

1令

CC1,则C可逆,于是有 C2T1C1B1C1TACA1C11

TBC2A2CAC2222A1B1即

与合同.AB22

2.设A对称,B与A合同,则B对称

证:由A对称,故AA.因B与A合同,所以存在可逆矩阵C,使BCAC,于是

TTAT1CC2CA2BT(CTAC)TCTATCCTACB

即B为对称矩阵.3.设A是n阶正定矩阵,B为n阶实对称矩阵,证明:存在n阶可逆矩阵P,使PTAP与PTBP均为对角阵.证:因为A是正定矩阵,所以存在可逆矩阵M,使

MTAME

记B1MBM,则显然B1是实对称矩阵,于是存在正交矩阵Q,使 TQTB1QDdiag(1,,n)

其中1,,n为B1MTBM的特征值.令P=MQ,则有

PTAPE,PTBPD

A,B同时合同对角阵.4.设二次型f(ai1mi11令A(aij)mn,则二次型f的秩等于r(A).xainxn)2,证:方法一

将二次型f写成如下形式:

f(ai1x1aijxjainxn)2

i1m设Ai=(ai1,,aij,,ain)

(i1,,m)

·107· a11a1ja1nA1则

Aai1aijainAi

am1amjamjAmA1mTTTT于是

AA(A1,,Ai,,Am)AiAiTAi

i1Amai1mm22故

f(ai1x1aijxjainxn)=[(x1,xj,xn)aij]

i1i1ainai1x1x1mmT

=[(x1,xj,xn)aij(ai1,aij,ain)xj]=(x1,xj,xn)(AiAi)xj

i1i1axxinnn

=X(AA)X

因为AA为对称矩阵,所以AA就是所求的二次型f的表示矩阵. 显然TTTTr(ATA)=r(A),故二次型f的秩为r(A).

T方法二

设yiai1x1ainxn,i1,,n.记Y(y1,,ym),于是

YAX,其中X(x1,,xn)T,则

2fyi2y12ymYTYXT(ATA)X.i1m

因为AA为对称矩阵,所以AA就是所求的二次型f的表示矩阵. 显然TTr(ATA)=r(A),故二次型f的秩为r(A).

T

5.设A为实对称可逆阵,fxAx为实二次型,则A为正交阵可用正交变换将f化成规范形.证:设i是A的任意的特征值,因为A是实对称可逆矩阵,所以i是实数,且i0,i1,,n.因为A是实对称矩阵,故存在正交矩阵P,在正交变换XPY下,f化为标准形,· ·108即

fXTAXYT(PTAP)YYTDYYTdiag(1,,i,,n)Y

21y1

(*)iyi2nyn

因为A是正交矩阵,显然DPTAPdiag(1,,i,,n)也是正交矩阵,由D为对角实矩阵,故i21即知i只能是1或1,这表明(*)恰为规范形.因为A为实对称可逆矩阵,故二次型f的秩为n.设在正交变换XQY下二次型f化成规范形,于是

22YDY

fXTAXY(QTAQ)Yy1yr2yr21ynT其中r为f的正惯性指数,Ddiag(1,,1,1,,1).TT

显然D是正交矩阵,由DQAQ,故AQDQ,且有AAAAE,故ATT是正交矩阵.6.设A为实对称阵,|A|0,则存在非零列向量ξ,使ξTAξ0.证:方法一

因为A为实对称阵,所以可逆矩阵P,使

PTAPDdiag(1,,i,,n)

其中i(i1,,n)是A的特征值,由|A|0,故至少存在一个特征值k,使k0,0取ξP1,则有

0100TT1k0 ,1,0,0)k

ξAξ(0,,1,,0)PAP1(00n0

方法二(反证法)

T

若X0,都有XAX0,由A为实对称阵,则A为半正定矩阵,故|A|0与|A|0矛盾.222

7.设n元实二次型fXAX,证明f在条件x1x2xn1下的最大值恰T为方阵A的最大特征值.

解:设1,2,,n是f的特征值,则存在正交变换XPY,使 fXTAXYT(PTAP)Y1y122y2nyn设k是1,2,,n中最大者,当XXx1x2xn1时,有

·109·

T22222XTXYTPTPYYTYy12y2yn1

因此

2222f1y122y2nyn k(y12y2yn)k

222这说明在x1=1的条件下f的最大值不超过k. x2xn

Y0(y1,,yk,,yn)T(0,,0,1,0,.0)T 则

Y0TY01

222f1y122y2kyknynk

令X0PY0,则

TX0X0Y0TY1

并且

Tf(X0)X0AX0Y0T(PTAP)Y0k

222这说明f在X0达到k,即f在x1x2xn1条件下的最大值恰为方阵A的最大特征值.

8.设A正定,P可逆,则PAP正定.证:因为A正定,所以存在可逆矩阵Q,使AQTQ,于是

PAPPQQP(QP)QP,显然QP为可逆矩阵,且 TTTTT(PTAP)T(QP)TQPPTAP,即PTAP是实对称阵,故PTAP正定.9.设A为实对称矩阵,则A可逆的充分必要条件为存在实矩阵B,使AB+BA正定.

证:先证必要性

取BA,因为A为实对称矩阵,则 1TABBTAE(A1)TA2E

当然ABBA是正定矩阵. 再证充分性,用反证法.

若A不是可逆阵,则r(A)

因为A是实对称矩阵,B是实矩阵,于是有

TTTX0(ABBTA)X0(AX0)TBX0X0B(AX0)0

这与ABABBA是正定矩阵矛盾.

10.设A为正定阵,则AA3A仍为正定阵.证:因为A是正定阵,故A为实对称阵,且A的特征值全大于零,易见A,A,A2*1AA3A全是实对称矩阵,且它们的特征值全大于零,故A,A,A全是正定矩阵,2*T2*12*11为实对称阵.对X0,有

XT(A2A*3A1)XXTA2XXTA*XXTA1X0

· ·110

AA3A的正定矩阵.11.设A正定,B为半正定,则AB正定.T

证:显然A,B为实对称阵,故AB为实对称阵.对X0,XAX0,2*1XTBX0,因XT(AB)X0,故AB为正定矩阵.12.设n阶实对称阵A,B的特征值全大于0,A的特征向量都是B的特征向量,则AB正定.证:设A,B的特征值分别为i,i(i1,,n).由题设知i0,i0,i1,,n.PTAPdiag(1,,i,,n)

为PiA的特征向量,i1,,n.因为A是实对称矩阵,所以存在正交矩阵P(P1,,Pi,,Pn),使 即

AP,iiiP

由已知条件Pi也是B的特征向量,故

BPiiPii1,i,,n

因此

ABPiAiPi(ii)Pi,这说明ii是AB的特征值,且ii0,i1,,n.又因为

ABPPdiag(11,,ii,,nn),PTP1.故

ABPdiag(11,,ii,,nn)P,显然AB为实对称阵,因此AB为正定矩阵.13.设A(aij)nn为正定矩阵,b1,b2,,bn为非零实数,记

B(aijbbij)nn

则方阵B为正定矩阵.

证:方法一

因为A是正定矩阵,故A为对称矩阵,即aijaji,所以aijbibjajibjbi,这说明B是对称矩阵,显然

a11b21abb1anbb1221n1b10a11a1nb102abbababb2121222n2n2

B= 0baa0bnn1nnnabbabbabbnnnnn1n1n2n1

对任给的n维向量X(x1,,xn)0,因b1,b2,,bn为非零实数,所以

T(b1x1,,bnxn)T0,又因为A是正定矩阵,因此有

b10a11a1nb10TT

XBXXX

0baa0bnn1nnna11a1nb1x1

=(b1x1,,bnxn)0

aabxnnnnn1即B是正定矩阵.

·111·

方法二

a11b12a12b1b2a1nb1bnabbab2abb2n2n B2121222abbabbabbnnnnn1n1n2n1则因为A是实对称矩阵,显然B是实对称矩阵,b10

B的k阶顺序主子阵Bk可由A的阶顺序主子阵分别左,右相乘对角阵而

0bn得到,即

b10a11a1kb10Bk

0baa0bkk1kkk计算Bk的行列式,有

Bkbi2Ak0

i1n故由正定矩阵的等价命题知结论正确.

14.设A为正定矩阵,B为实反对称矩阵,则AB0.证:因为M是n阶实矩阵,所以它的特征值若是复数,则必然以共轭复数形式成对出现;将M的特征值及特征向量写成复数形式,进一步可以证明对于n阶实矩阵M,如果对任意非零列向量X,均有

XTMX0

可推出M的特征值(或者其实部)大于零. 由于M的行列式等于它的特征值之积,故必有M0 .

因为A是正定矩阵,B是反对称矩阵,显然对任意的 非零向量X,均有

XT(AB)X0,而A+B显然是实矩阵,故AB0.T

15.设A是n阶正定矩阵,B为nm矩阵,则r(BAB)=r(B).

T

证:考虑线性方程组BX0与BABX0,显然线性方程组BX0 的解一定是BTABX0的解.

TT

考虑线性方程组BABX0,若X0是线性方程组BABX0的任一解,因此有BTABX00.

上式两端左乘X0有 T(BX0)TA(BX0)0

· ·112

T

因为A是正定矩阵,因此必有BX00,故线性方程组BX0与 BABX0是同解方程组,所以必有r(BAB)= r(B).16.设A为实对称阵,则存在实数k,使|AkE|0.证:因为A为实对称阵,则存在正交矩阵P,使 TP1APdiag(1,,i,,i).其中i为A的特征值,且为实数,i1,,2.于是

APdiag(1,,i,,n)P1

1k

|AkE||P|ik|P|(ik)

1i1nnk取kmax{|i|1},则1in|(k)0,故

|AkEii1n0.17.设A为n阶正定阵,则对任意实数k0,均有|AkE|kn.证:因为A为正定矩阵,故A为实对称阵,且A的特征值i0,i1,,n.则存在正交矩阵P,使

11,PAPin于是对任意k0,有

1k|P|

|AkE|1P1 APinikP|1|(ik)kkn.i1i1nnnk

18.设A为半正定阵,则对任意实数k0,均有|AkE|0.证:因为A为半正定矩阵,故A为实对称矩阵,且A的特征值i0,i1,,n.则存在正交矩阵P,使

PAPdiag1(,于是对任意k0,有

|AkE|P||dia1g(k,ik, 1i,,n,,A)Pdiag(1,,i,,n)P1

n,k,P1|(|ik)kn0.)i1n·113·

19.A为n阶实矩阵,为正实数,记BEAA,则B正定.T

证:BT(EATA)TEAAB,故B是实对称矩阵.T

对X0,有(X,X)0,(AX,AX)0,因此有

AX(X,X)AX(AX,)0

XTBXXT(EATA)XXTXXTAT故

BEAA为正定矩阵.20.A是mn实矩阵,若AA是正定矩阵的充分必要条件为A是列满秩矩阵.

证:先证必要性

方法一

设AA 是正定矩阵,故X00,有

TX0(ATA)X0(AX0)T(AX0)0

由此AX00,即线性方程组AX0仅有零解,所以r(A)=n,即A是列满秩矩阵. TTT方法二

因为AA 是正定矩阵,故r(AA)=n,由于 TTnr(ATA)r(A)n

所以r(A)=n. 即A是列满秩矩阵.

再证充分性:因A是列满秩矩阵,故线性方程组仅有零解,X0,X为实向量,有AX0.因此

XT(ATA)X(AX)T(AX)(AX,AX)0

显然AA 是实对称矩阵,所以AA 是正定矩阵.

21.设A为n阶实对称阵,且满足A6A4E0,则A为正定阵.证:设为A的任意特征值,ξ为A的属于特征值的特征向量,故ξ0,则

2TTAξξ,2A2ξ2ξ

A6A4E0

Aξ6Aξ4ξ0

2(264)ξ0 2由

ξ0,故

640.350.因为A为实对称矩阵,故A为正定阵.22.设三阶实对称阵A的特征值为1,2,3,其中1,2对应的特征向量分别为ξ1(1,0,0)T,ξ2(0,1,1)T,求一正交变换XPY,将二次型fXTAX化成标准形.解:设ξ3(x1,x2,x3)T为A的属于特征值3的特征向量,由于A是实对称矩阵,故ξ1,ξ2,ξ3满足正交条件

1x10x20x30 0x1x1x0231

解之可取ξ3(0,1,1),将其单位化有

· ·11

411T11T,),P3(0,)222210011

P(P1,P2,P3)0.2211022则在正交变换XPY下,将f化成标准形为 P1(1,0,0)T,P2(0,22 fXTAXYT(PTAP)Yy122y23y

323.设

122A24a

2a42二次型fXTAX经正交变换XPY化成标准形f9y3,求所作的正交变换.2解:由f的标准形为f9y3,故A的特征值为120,39.1故

|EA|22a2(9)

422214a2

令0,则

2解之

a4.4a0 2a4122由此

A244

244

对于120有

122122

0EA244000

244000可得A的两个正交的特征向量

22ξ12,ξ21

12

·115·

1对于39,可得A的特征向量为2

2将特征向量单位化得

221111P12,P21,P32

3331222211则P(P1,P2,P3)212为正交矩阵,31222211正交变换XPY为X212Y.3122

注:因特征向量选择的不同,正交矩阵P不惟一.222

24.已知二次型fx12x2(1k)x32kx1x22x1x3正定,求k.解:二次型的表示矩阵

11kAk20

101k1k20k20由A正定,应有A的各阶顺序主子式全大于0.故 k2,即.2|A|0k(kk2)0解之

1k0.222

25.试问:三元方程3x13x23x32x1x22x1x32x2x3x1x2x30,在三维空间中代表何种几何曲面.222

解:记f3x13x23x32x1x22x1x32x2x3x1x2x3

311x1x1则

f(x1,x2,x3)131x2(1,1,1)x2

113xx33311

A131.1132则|EA|(2)(5).故A的特征值为122,35.· ·116

对于122,求得特征向量为

1ξ11,0由Schmidt正交化得

1ξ20.11β11,0121β2.211对于35得特征向量ξ31,标准化得

1111632111P1,P,P23 26321063111263111

P(P1,P2,P3)

63221063则在正交变换XPY下

22f2y122y25y33y3

于是f0为

22y122y25(y3323) 102022为椭球面.26.求出二次型f(2x1x2x3)(x12x2x3)(x1x22x3)的标准形及相应的可逆线性变换.解:将括号展开,合并同类项有

·117·

222222

f4x1x2x34x1x24x1x32x2x3x124x2x34x1x22x1x34 2x3x222

x1x24x32x1x24x1x34x2x3

22222

6x16x26x36x1x26x1x36x2x36(x12x2x3x1x2x1x3x2x3)

1132323119x2x3)2x2x3x2x3]6(x1x2x3)2(x2x3)2 2244222211yxx11222x3

y2x2x3

yx33111y122x111即

y20x2 y001x33

6[(x1则可逆变换为

1x1x20x03在此可逆线性变换下f的标准形为

112y111y2 01y392y2.2f6y12

27.用初等变换和配方法分别将二次型

222

(1)f1x13x22x44x1x24x1x42x2x4

(2)f22x1x26x2x32x1x3

化成标准形和规范形,并分别写出所作的合同变换和可逆变换.解:先用配方法求解

(1)f1(x14x1x24x1x4)3x22x42x2x4

(x12x22x4)x26x46x2x4(x12x22x4)(x23x4)3x4 222222222y1x12x22x4yx3x224

yx33y4x4x1y12y24y4xy3y224 xy33x4y4 · ·118

12040103

P00100001

则二次型f经可逆线性变换xPy化成标准形 f1y12y23y4y1z1z1y1yzzy2222

若再令 

即 y3z3 zy33y3zz3y4444311

Q133222则原二次型f1经可逆线性变换xPQz化成规范形f1y1.y2y4x1y1y2

(2)先线性变换x2y1y2

xy33原二次型化成

2222

f22(y1y2)6y1y36y2y32y1y32y2y32y12y24y1y38y2y3

222

2(y1y3)22y2 2(y1y3)22(y22y3)26y38y2y32y3z1y1y3y1z1z3110101

令z2y22y3,即y2z22z3.令P1110,P2012

zyyz0010013333则原二次型f2经可逆线性变换xP1P2z化成标准形 f22z122z26z3z1w12z1

若再令w22z2

即 z2w6z33z3

2w122w2 26w36·119·

222

Q

266则原二次型f2经可逆线性变换xP1P2Qw化成规范形

22.f2w12w2w3

用初等变换法求解

1223

(1)设A00211223

(AE4)00210201

0002***02010002000***0010r22r100c22c1021010r43r20c43c20001000100 01033030103010002100***000***1000 0100 0110r4(2)r101

c4(2)c1000310101r3300

1c3300120200001T4330001010021002100

P1,P20010

001034304313033222则原二次型f1经过可逆线性变换xP1y化成标准形f1y1y23y3.二次型经过可逆线性变换xP2z化成规范形f1z1z2z4.· ·120

222T011

(2)设A103

1301100010r3(1)r203010c3(1)c21

(AE3)113000101003360010 0111001

r33r1c33c101010010001021r1r2c1c210000063110063200110

r12(2)r1111c1002(2)c12220 00631110011201

2r121,2c112r2,2c010162220 6r23,6c300162666611T0110T

令 P112210,P11202222311662666则原二次型f2经过可逆线性变换xP1y化成标准形

f2y2122212y26y3

二次型经过可逆线性变换xP2z化成规范形

f2222z1z2z3

28.用三种不同方法化下列二次型为标准形和规范形.(1)f22212x13x24x2x33x3

(2)f22222x1x2x3x42x1x22x1x42x2x32x3x4

解:先用配方法求解

001011 121· · 42522x2x3)3x32x123(x2x3)2x3 333y1x1x1y122

令 y2x2x3

即 x2y2y3

33y3x3x3y31002

P01

3001

(1)f12x13(x222则二次型f1经可逆线性变换xPy化成标准形

2f12y123y252y3 32z1y12z12y13z2

若再令 z23y2

即 y2315z15y33yz3335223

Q

3155原二次型f1经可逆线性变换xPQz化成规范形

22.f1z12z2z3

(2)f2(x12x1x22x1x4)x2x3x42x2x32x3x4

(x1x2x4)2x32x2x32x3x42x2x4 2

(x1x2x4)2(x3x2x4)2(x22x4)23x4 2222y1x1x2x4yx2x224

y3x2x3x4y4x4 · ·122

x1y1y2y4xy2y224 x3y2y3y4x4y411010102

P0111

0001则二次型f2经可逆线性变换xPy化成标准形

f2y223y22y12y34 z1y1y1z1

若再令 z2y2

即 y2z2zy 3y

33z3z43y4y433z411

Q1 33

原二次型fPQz化成规范形f22222经可逆线性变换x2z1z2z3z4.用初等变换法求解

20

(1)设A0032

02320010200100

(AE03)032010r(233)r2c(203001030230013)c25200303110010012

12r112c10100103r1 23c21535r1535c3215150010155 123· · 101

令 P1020300,1TP212000132151500 15522T则原二次型f1经过可逆线性变换xP1y化成标准形f12y13y2222可逆线性变换xP2z化成规范形f1z1.z2z352y3.二次型经过311011110

(2)设A011110111011000111100100

(AE4) 011100101011000110011000100010011110000111r2(1)r1r4r1

c2(1)c101110010c4c101110111100010110110001000100010011110000011r3r2r3r4

c3c201121110c3c400320012010010120110001000100010001110002010r3(2)r2r2r4

c3(2)c200302111c2c400302010010010100110001000020001011r4()r22

00302111 1c4()c2211110000222 · ·124

000100

010001000100

111001000101

1110011011r2c222

110r3c3332r42c40***01233220033000101120

令 P12333

33312202212222fy2y3yy4.f2可则原二次型f2可经可逆线性变换xP化成标准形y212312经可逆线性变换xP2z化成规范形

222 f2z12z2z3z41T0000101

P22311131102220123 32200102T用正交变换法求解

200

(1)f1的矩阵为A032,023200由

|EA|知A的特征值为1,2,5.00322(1)(2)(5),3100x10x100对11,解022x20,得x2k1,取T11,单位化

1022x0x1330000x10x1112P0xk0P1,对22,解012x,得,取220,220x002013x322

·125· 0x1030对35解022x20,得022x03x100xk1T 取321,单位化得1x13P30022,令 P22222210002,则P为正交阵,经正交变换XPY,222222原二次型f化为fXTAXy1.2y25y311011110

(2)f2的矩阵为

A0111101111011110由

|EA|(1)(3)(1)2

01111011知A的特征值为1,3,1,1.x12101x1011xx12100122, 得

k,取T1对11,解1x3011121x301x1x1012044122112单位化得P1对23,解,01211210210x1010x2021x3012x401, 得 x11x2k1.x311x4 · ·126

121

T1122

1单位化得 P21.1212

对341,解

0101x1x1101001x0x0202,得

01011010x3x0xk1k1 312040x4011

T300,T41,1001202

再令

P023,P2240 22021122220112

令 P2202112,则P为正交阵,经正交变换XPY,02221122022原二次型f化为

fXTAXy222213y2y3y4.29.判

线性代数习题答案

第一篇:线性代数习题答案 综合练习一01AA.01BB、C.01CA.01DA.01Er2,s5,t8或r5,s8,t2或r8,s2,t5.01Fi2,j1.01...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部