电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

循环流化床锅炉运行简答题

栏目:合同范文发布:2025-01-28浏览:1收藏

循环流化床锅炉运行简答题

第一篇:循环流化床锅炉运行简答题

1、锅炉辅助系统包含哪些?

煤粉制备系统;锅炉通风系统;烟尘处理系统;锅炉水处理系统;燃料运输系统;除灰系统;给水系统和供水系统等

2、生成氮氧化物的途径有哪些?

一是煤中的氮化物在火焰中热分解,然后氧化生成,“燃料型”NOx 二是空气中的氮在高温下与氧反应生成,“热力型”NOx

三是空气氮与煤中的碳、氢离子团发生反应生成,“快速型”NOx

3、氮氧化物减少排放的方法有哪些?

一是在燃烧中进行控制,控制火焰温度峰值其主要措施有:空气分级、低过量空气系数、燃料分级、烟气再循环等。

二是在燃烧后中通过催化剂选择法或者非催化剂选择法,将烟气中的NOx还原。

4、影响灰熔点的因素有哪些?

1、成分因素

2、介质因素

3、浓度因素

5、循环流化床锅炉结焦的现象主要有哪些?

1、DCS显示床温、床压极不均匀,燃烧极不稳定,相关参数波动大、偏差大。

2、结焦初期(局部)料层差压下降,结焦严重时,料层差压急剧增加。

3、炉膛出口氧量快速下降,几乎接近零。

4、炉膛负压增大,一次风量,风室风压波动大。

5、负荷、压力、气温均下降。

6、排渣不畅,床层排渣管发生堵塞,7、观察火焰,局部或大面积火焰呈现白色,6、循环流化床锅炉结焦的原因有哪些?

1、秸秆燃料中杂质太多,尤其是石头、砖头等直接造成局部床料不流化而结焦。

2、床料熔点太低,在床温较低的情况下就直接结焦。

3、一次风机风量低于临界流化风量,导致物料流化不好,引起结焦,4、风帽损坏,直接导致布风板布风不均匀,底层物料不流化,导致结焦,5、返料影响,返料不正常或返料器中浇注料突然坍塌导致返料器无法正常返料,引起床温过高而结焦,6、床温测量装置失灵,造成运行人员误判断引起误操作发生结焦。

7、负荷增加太快时操作不当控制不住床温时引起结焦。

8、炉内浇注料大面积坍塌。

7、循环流化床锅炉结焦的预防措施有哪些?

1、保证良好的流化工况,防止床料沉积

2、保证燃料制备系统正常工作,给料长度符合设计要求。

3、严格控制料层差压,均匀排渣。

4、认真监测床底部和床中部温差

5、床上木炭点火过程中严格控制进料量

6、变负荷运行严格控制床温

7、压火时正确操作

8、合理调整一二次风

9、改变燃料的焦结特性

10、锅炉床上木炭点火启动前所加底料含碳量不超过10%,点火中待木炭充分燃烧,没有火苗时再起火,防止炉内可燃物含量高起火后超温结焦。

8、请分条简述故障停炉条件。

1、锅炉严重缺水,低于汽包下部可见水位时。

2、锅炉严重满水,水位超过汽包上部可见水位时。

3、炉管爆破,不能维持正常水位时。

4、所有水位计失效,无法监视水位。

5、燃料在尾部烟道再燃烧,使排烟温度不正常升高时。

6、主蒸汽管道、主给水管道和锅炉范围连接导管爆破。

7、锅炉超压或安全门拒动,对空排汽门又打不开时。

8、引风机或一次风机故障不能继续运行时。

9、请分条简述请示停炉条件。

1、炉水、蒸汽品质严重恶化,经多方处理无效时。

2、锅炉承压部件漏泄无法消除时。

3、过热蒸汽温度超过规定值,经多方调整或降低负荷时仍无法恢复正常时。

4、流化床、返料器、旋风分离器内部结焦或堵灰,运行中无法处理时。

5、所有远方汽包水位计(电接点/差压式水位计)的全部损坏时。

6、放渣管堵塞,经多方努力无法消除,料层阻力超过极限时。

7、安全门动作不回座,经多方调整采取措施仍不回座或严重泄漏时。

8、尾部烟道积灰严重,经提高引风机出力,但仍无法维持炉膛正常负压或威胁设备安全时。

10、锅炉缺水的现象,原因和处理措施如何?

一、缺水现象:

1、汽包水位低于正常水位。

2、所有水位计指示负值,水位警报器发出水位低的信号。

3、给水流量不正常的小于蒸汽流量。

4、严重时过热蒸汽温度升高。

二、缺水原因:

1、给水自动调节器失灵,给水调整装置故障。

2、水位表、蒸汽流量表或给水流量表指示不正确,使运行人员误判断而操作错误。

3、给水压力低。

4、锅炉排污管道、阀门漏泄、排污量过大。

5、水冷壁管或省煤器管爆裂。

6、运行人员疏忽大意,对水位监视不够,调整不及时或误操作。

三、缺水的处理

1、当锅炉汽压及给水压力正常,而汽包水位低于正常水位时,应冲洗水位计,对照水位计指示是否正确。

2、若因给水自动调节器失灵而影响水位下降时,应将“自动”改为“手动”给水,增加给水量。

3、如用主给水调节阀不能增加给水时,则应改为旁路管道增加给水。

4、经上述处理后汽包水位仍下降,且降至-100mm时,除应继续增加给水外,尚须关闭所所排污门及放水门,必要时可适当降低锅炉蒸发量。

5、如汽包水位继续下降,且在汽包水位计中消失时,须立即停炉,关闭主汽门,经叫水水位计中出现水位时,可继续向锅炉上水。

6、由于运行人员疏忽大意,使水位在汽包水位计中消失,且未能及时发现,依电接点水位表的指示能确认为缺水时,须立即停炉关闭主汽门及给水门,并用叫水法进行叫水(A经叫水后,水位在汽包水位计中出现时,可向锅炉上水,并注意恢复水位。B经叫水后,水位未在汽包水位计中出现时,严禁向锅炉上水。)

7、当给水压力下降时,应立即联系汽机值班人员提高给水压力。

8、如果给水压力迟迟不能恢复,且使汽包水位降低时,应降低锅炉蒸发量,维持水位。

9、在给水流量小于蒸汽量时,禁止增加锅炉蒸发量。

11、请简述锅炉满水现象,原因及处理。

一、满水现象

1、汽包水位高于正常水位。

2、电接点水位表指示值增大。

3、二次仪表水位指示超过正常水位。

4、水位警报器鸣响,并发出水位高的信号。

5、给水流量不正常的大于蒸汽流量。

6、过热蒸汽温度下降。

7、严重满水时,蒸汽管道内发生水冲击,从法兰盘向外冒汽。

二、满水原因

1、给水自动调节器动作失灵,或给水调节装置故障。

2、水位指示不正确,使运行人员误操作。

3、锅炉负荷增加太快。

4、运行人员疏忽大意,对水位监视不够或误操作。

5、给水压力突然升高。

三、满水的处理

1、当锅炉给水压力及蒸汽压力正常,而汽包水位超过正常水位时,冲洗对照水位确定其指示正确性。

2、因给水自动调节器失灵面影响水位升高时,应立即将自动给水改为手动给水,减小给水量。

3、如调整门不能控制给水时,改为大旁路控制给水。

4、如水位继续上升,应立即开启事故放水门或排污门。

5、经上述处理后,汽包水位仍上升且超过100mm时,应采取下列措施: 1)关小或关闭给水门(停止上水后,应开启省煤器再循环)。2)加强锅炉放水。3)根据汽温下降情况,关小或关闭减温器水门,必要时开启过热器和蒸汽管道疏水门,通知汽机司机开启有关疏水门。

6、如汽包水位已超过汽包水位计上部可见水位时,应采取下列措施: 1)立即停止锅炉运行,关闭主汽门。2)停止向锅炉上水,开启省煤器再循环门。3)加强锅炉放水,注意水位在汽包水位计中的出现。4)故障消除后,尽快恢复锅炉机组的运行。

7、由于锅炉负荷骤增而造成水位升高时,则应缓慢增大负荷。

8、因给水压力异常而引起汽包水位升高时,应立即与汽机值班人员联系,尽快将给水压力恢复正常。

12、锅炉汽水共腾的现象、原因及处理措施分别有哪些?

一、汽水共腾的现象

1、水位计内水位剧烈波动,失去指示的正确性。

2、过热蒸汽温度急剧下降。

3、严重时蒸汽管道内发生水冲击,法兰处冒汽。

4、饱和蒸汽含盐量增大。

二、汽水共腾的原因

1、炉水质量不合格。

2、排污不及时,炉水处理不符合规定。

3、化学加药调整不当。

4、负荷增加过快,汽水分离装置损坏。

三、汽水共腾的处理

1、请示值长,降低负荷使负荷稳定维持低水位运行。

2、开启过热器出口联箱疏水,通知汽机开主蒸汽管道疏水门。

3、开大连续污门,必要时开启定期排污门。

4、停止加药。

5、通知化学人员取样化验,采取措施改善炉水质量。

6、在炉水质量未改善之前,不允许增加锅炉负荷。

7、故障消除后冲洗对照水位计。

13、什么是炉膛差压?

炉膛差压是指稀相区的压力与炉膛出口的压力差,是表示炉膛稀相区颗粒浓度的重要物理量。

14、什么是CFB料层差压?特点如何?

CFB料层差压也叫料层阻力,指的是对应一定的流化风量和料层厚度,当流化介质穿越布风板上方所支撑的物料颗粒层时,在沿着料层高度的方向上所产生的流动阻力,料层差压是表示流化床床料厚度的物理量.15、请分条简述转机启动前的检查内容: 1各电动机、转机地脚螺丝牢固,轴端露出部分保护罩、栏杆齐全牢固,联轴器联接完好。2电动机绝缘检查合格,接线盒,电缆头,电机接地线及事故按钮完好,电动机及其所带机械应无人工作。

3设备周围照明充足完好,现场清洁,无杂物、积粉、积灰、积水现象,各人孔、检查孔关闭。4轴承、电机等冷却水装置良好,冷却水通畅、充足,通风良好,无堵塞。5各轴承座及液力偶合器油位正常油质良好,油镜及油位线清楚,无漏油现象。

6各仪表完好,指示正确,保护、程控装置齐全完整,调门挡板及其传动机构试验合格。

16、请分条简述辅机停运规则:

1发生人身事故无法脱险时。

2发生强烈振动有损坏设备危险时。3轴承温度不正常升高超过规定时。

4电动机转子和静子严重摩擦或电动机冒烟起火时。5辅机的转子和外壳发生严重摩擦或撞击时。6辅机发生火灾或被水淹时。

17、定期排污应注意哪些方面?.1 锅炉排污时,应遵守《电业安全工作规程》的有关规定。2定期排污一般在低负荷时进行,两炉不得同时进行排污。

3排污前,应与监盘人员做好联系配合工作,严格控制与监视汽包水位及给水压力,并进行相应的调整。4为了防止水冲击,排污应缓慢进行,如发生管道严重振动,应停止排污。

5排污时,先全开一次阀,缓慢开启二次阀。各排污阀全开时间不得超过30秒,不准同时开启两个或更多的排污阀。结束时,先关闭二次阀,再关闭一次阀。排污结束后,进行全面检查,确认各阀门关闭严密始可离开现场。锅炉燃料工况不稳及有其它异常情况时,禁止排污,在排污过程中,如锅炉发生异常,应立即停止排污(水位高时另外)。

18、紧急停炉的步骤有哪些? 1达到紧急停炉条件时MFT动作,按MFT动作处理。

2如果MFT未动作,同时按下两个“MFT”按钮手动停炉,确认停止向炉内提供一切燃料,可开过热器向空排汽。

3将各自动改为手动操作,控制好汽包水位、床温、汽温、汽压,根据汽温关小或关闭减温水手动门。4给水门关闭后,锅炉停止上水时应开启省煤器再循环(省煤器爆破时除外)。5若尾部烟道再燃烧应立即停止风机,密闭烟风挡板,严禁通风。

6迅速采取措施消除故障,作好恢复准备工作,汇报上级,记录故障情况。

7短时无法恢复时,上水至汽包高水位(炉管爆破不能维持水位时除外),关给水门、联系汽机停给水泵,关连排、加药、取样二次门。

19、MFT动作现象如何? 1MFT动作,发出报警;

2所有给煤机跳闸,石灰石系统切除,床下点火系统切除,燃油快关阀关闭; 3床温、床压下降;

4汽温、汽压下降,蒸汽流量剧减,汽包水位先下降后上升; 5所有风量控制改造为手动方式,并保持最后位置;

6除非风机本身切除,否则所有风机控制都将改为手动方式,并保持最后位置,若因汽包水位低跳闸,一次风机入口导叶将关至0,在风机本身切除情况下,风机将遵循其逻辑控制程序;

7燃烧控制输出信号限制引风机自动控制,保证炉膛压力不超过极限值; 20、MFT动作的条件和原因有哪些? 1同时按两只锅炉主燃料切除按钮;

2床温高于1050℃(信号来自燃烧控制系统); 3炉膛出口压力为高高值+2500Pa(2/3); 4炉膛出口压力为低低值-2500Pa(2/3);

5炉汽包水位为高高值(高出正常水位200mm)(2/3); 6炉汽包水位为低低值(低出正常水位-200mm)(2/3); 7引风机跳闸;

8一、二次风机跳闸;

9总风量过低,小于25%额定风量(延时)(信号来自燃烧控制系统); 10风煤比小于最小值(信号来自燃烧控制系统); 11床温低于700℃,且床下点火器未投运; 12失去逻辑控制电源;

13燃烧控制系统失去电源(信号来自燃烧控制系统); 14所有高压流化风机跳闸; 15汽轮机切除。

21、MFT动作应如何处理? 一.如不是因为引风机、一、二次风机跳闸,DCS系统故障所致,可直接按以下原则处理: 1调节风机档板,保持正常的炉膛负压; 2调节给水流量,保持汽包水位正常; 3迅速查明MFT动作原因;

4如MFT动作原因在短时间内难以查明或消除,应按停炉处理,并保持锅炉处于热备用状态; 5如MFT动作原因能在短时间内查明并消除,可按热态启动恢复锅炉运行; 6如因尾部烟道再燃烧停炉时,禁止通风,停运所有风机。

二.如因引风机、一、二次风机跳闸,DCS故障所致,除按以上原则处理外,还应考虑床料局部堆积和流化停滞。

22、请分条简述水冷壁爆管现象、原因和处理方法?.1 现象:

1轻微破裂,焊口泄漏时,会发出蒸汽嘶嘶声,给水流量略有增加;

2严重时,爆管处有明显的爆破声和喷汽声,炉膛负压变正,汽包水位急剧下降,给水流量不正常大于蒸汽流量;

3炉膛负压控制投自动时引风机调节挡板不正常的开大,引风机电流增加; 4旋风分离器进、出口烟温下降,料腿回料温度降低; 5排烟温度降低,排渣困难;

6床压增大,床层压差增大,床料板结。床温分布不均。2 原因:

1炉水、给水品质长期超标,使管内结垢,致使局部热阻力增大过热; 2水循环不佳,造成局部过热; 3管材不合格,焊接质量差; 4管外壁磨损严重; 5锅炉严重缺水。3 处理措施:

1水冷壁损坏不严重时:加大给水量,维持汽包水位,可根据情况,降低负荷运行并申请停炉;燃烧不稳时应及时投油助燃。

2水冷壁损坏严重,无法维持正常水位时:紧急停炉,停止向锅炉上水;停炉后,静电除尘器应立即停电;维持引风机运行,排除炉内蒸汽,若床温下降率超过允许值,停引风机;停炉后,尽快清除炉内床料,将电除尘、空预器下部灰斗存灰除尽;其余操作,按正常停炉进行。

23、

第二篇:循环流化床锅炉运行7.28

9.5 床温过高或过低

9.5.1 现象:

9.5.1.1各床温测点显示高或低; 9.5.1.2床温高或低报警; 9.5.1.3主汽压力升高或降低; 9.5.1.4炉膛出口温度偏高或偏低;

9.5.1.5床温高严重时,将引起床料结渣,甚至引起大面积结焦;

9.5.1.6床温过低,燃烧不稳。9.5.2 原因:

9.5.2.1给煤粒度过大或过细,煤质变化过大; 9.5.2.2床温热电偶测量故障; 9.5.2.3给煤机工作不正常; 9.5.2.4一、二次风配比失调; 9.5.2.5排渣系统故障; 9.5.2.6回料系统堵塞;

9.5.2.7石灰石系统不能正常运行。9.5.3 处理措施:

9.5.3.1检查床温热电偶;

9.5.3.2床温高时,减少给煤量,降低锅炉出力,使床温维持在900±40℃;

9.5.3.3床温低时,增加给煤量,提高床温; 9.5.3.4检查给煤机运行及控制是否正常; 9.5.3.5合理配风、调整一、二次风比例;

9.5.3.6床温过低,致使燃烧不稳时,应投入油枪助燃; 9.5.3.7检查煤破碎系统,故障时,及时处理;

9.5.3.8若是回料系统堵塞引起床温升高,应采取措施疏通回料器,无法疏通时申请停炉。9.6 床压高或低

9.6.1 现象:

9.6.1.1发出床压高或者低报警; 9.6.1.2床压指示降低或升高; 9.6.1.3冷渣器排渣量过大或过小;

9.6.1.4水冷风室压力指示过高或者过低。9.6.2 原因:

9.6.2.1床压测量故障;

9.6.2.2冷渣器故障,排渣量过小或者过大; 9.6.2.3石灰石给料量和燃料量不正常; 9.6.2.4一次风量不正常;

9.6.2.5回料系统堵塞;

9.6.2.6物料破碎系统故障;

9.6.2.7锅炉增减负荷过快或煤质变化过大。9.6.3 处理措施:

9.6.3.1床压过高,应加大排渣量,减少给料量;床压过低,减少排渣量,必要时,加大石灰石供给量或向炉内添加床料; 9.6.3.2检查床压测点,若有故障,及时消除;

9.6.3.3破碎系统故障时,及时处理,使物料粒径在合格范围内;

9.6.3.4回料系统故障应采取措施及时处理。

9.17 厂用电中断

9.17.1现象。

9.17.1.1工作照明中断,事故照明启用。9.17.1.2MFT动作,事故报警。

9.17.1.3所有转动机械停止工作,锅炉操作设备都不能工作。

9.17.1.4DCS依赖应急电源工作或无法运行。

9.17.1.5锅炉蒸汽流量,汽压,汽温均迅速下降。9.17.1.6在外部电源未恢复前,所有操作无法进行。9.17.2处理。

9.17.2.1如果发生MFT动作,按MFT动作处理。

9.17.2.2启动另一侧母线上的给水泵向锅炉进水,汇报值长,要求尽快恢复供电。

9.17.2.3一旦电源恢复,应立即启动有关辅机,向锅炉给水。

9.17.2.4复位所有跳闸设备,在启动任何设备之前,要对锅炉及其相关部件进行检查。运行人员将所有的锅炉控制系统复位到初始启动状态。

9.17.2.5在启动引风机前,要了解所有床温指示值。注意是否有些温度指示比平均值高,有些温度计可能埋在热床料中。

9.17.2.6重新启动风机时,要密切注意床温,旋风分离器烟气温度和烟道的温度变化。

9.17.2.7当达到正常空气流量时,床温和烟道中所有温度都应出现下降。满足连锁要求,则对锅炉进行正常吹扫并开始锅炉的热启动程序。

9.17.2.8当启动给煤机时,必须皮带上已有燃料,应缓慢给煤。9.18 给煤机故障

9.18.1现象。

9.18.1.1给煤机给煤量不正常或电流到“0”。9.18.1.2氧量上升。

9.18.1.3床温,密相区,稀相区温度下降。

9.18.1.4如两侧给煤机同时跳闸,导致锅炉熄火。9.18.2原因。

9.18.2.1电源中断。9.18.2.2驱动装置故障。

9.18.2.3链条和胶带松紧不合适。

9.18.2.4异物进入给煤机,造成设备损坏或堵塞。9.18.2.5请扫装置出现故障。

9.18.2.6胶带接口不牢松脱或胶带断裂。9.18.3处理。

9.18.3.1如电源问题,迅速联系恢复电源。

9.18.3.2如一台给煤机损坏,可加大另一台给煤机的负荷运行,紧急抢修故障给煤机。

9.18.3.3严禁任何异物进入给煤机,发现后立即清除(必要时停运给煤机,关闭密封风门,打开舱盖)。9.18.3.4经常检查给煤机,发现异常立即处理。9.18.3.5胶带接口要牢固,胶带质量要好。

9.18.3.6如两台给煤机同时故障,且短期内无法恢复时,则要压火处理。

第三篇:循环流化床锅炉运行经验介绍

循环流化床锅炉运行经验介绍

循环流化床锅炉简介

SG?440/13.7?M562循环流化床锅炉为超高压中间再热,单锅筒自然循环、循环流化床锅炉是上海锅炉厂有限公司在引进、吸收美国ALSTOM公司循环流化床锅炉技术的基础上,运用了ALSTOM公司验证过的先进技术和几十台超高压中间再热循环流化床锅炉设计、制造、运行的经验,进行本锅炉的全套设计。

SG?440/13.7?M562循环流化床锅炉主要由锅筒、悬吊式全膜式水冷壁炉膛、绝热式旋风分离器、U型返料回路以及后烟井对流受热面组成。

炉膛上部布置4片水冷屏和16片屏式过热器,其中水冷屏对称布置在左右二侧。炉膛与后烟井之间,布置有两台绝热钢板式旋风分离器。旋风分离器下部各布置一台非机械的“U”型回料器,回料器底部布置流化风帽,使物料流化返回炉膛。

锅炉采用两次配风,一次风从炉膛底部布风板、风帽进入炉膛,二次风从燃烧室锥体部分进入炉膛。锅炉共设有四个给煤点和四个石灰石给料口,均匀地布置在炉前。炉膛底部设有钢板式一次风室,悬挂在炉膛水冷壁下集箱上。本锅炉采用床上启动点火方式,床上共布置4支(左右侧墙各2)大功率的点火油枪。同时在炉膛燃烧室左右两侧各布置一台流化床冷渣器。

本锅炉锅筒中心标高为47000mm,G排柱至K排柱的深度为37200mm,主跨宽度为21000mm,左右侧副跨宽度均为5000mm。3 循环流化床锅炉常见故障分析及对策 3.1炉内受热面磨损

循环流化床锅炉(简称CFB锅炉)除了高效节能、低污染地清洁燃烧优点以外还有一个最大的特点就是燃料适用的广泛性。正因为如此,大多的循环流化床锅炉都燃用了高水份、含灰量极大的劣质煤,燃烧时,烟气中含有大量的飞灰颗粒,这些灰粒以极高的速度冲刷炉壁及其设备,使其表面受到剧烈的磨损,发生局部的严重破坏,甚至导致事故停炉。

炉内受热面的磨损主要集中在水冷壁四角、密相区上部过渡位置、温度测点周围、炉内悬吊受热面、顶部与分离器相对位置的水冷壁和过热器以及焊缝附近,由于上述位置均处于物料的次密相区和涡流区,飞灰浓度和速度相对较大,设计上没有在该处考虑受热面的防磨,因此就出现了防磨的盲点。据不完全统计,全国的流化床锅炉因磨损造成壁厚减薄而爆管的事故中有26.41%是出现在上述部位。3.1.1 各部位磨损机理分析 3.1.1.1 流化床区域

在燃烧室中,从床的底部至固体颗粒膨胀起来的床层界面称为流化床。要使流化床上的固体颗粒保持悬浮沸腾状态,使煤粉颗粒得以充分有效地燃烧,从炉底布风装置出来的空气流必须具有足够的速度、强度和刚度,以在支撑固体颗粒料层的同时,产生强烈的扰动,研究发现,当床料密度ρs(1-ε)=8-10kg/m3时(ρs??颗粒密度,ε??空隙率),床内细颗粒就会聚成大粒子团,团聚后的粒子团由于重量增加体积加大,以较大的相对速度沉降,并具有边壁效应,使流化床中气?固流动形成近壁处很浓的粒子团以斜下切向运动,下降到炉壁回旋上升,颗粒彼此之间以及与炉壁之间进行频繁的撞击和摩擦,使炉壁出现了严重的磨损。锅炉运行一年后大修检查,发现水冷壁密相区耐磨料过度部位的水冷壁普遍出现不同程度的磨损,经测厚最薄为4.7mm,磨损量达1.8mm。3.1.1.2炉膛内悬吊受热面

布置在炉膛内的过热器等受热面,所处的位置是烟气流必经通道,高浓度、高速度的飞灰颗粒,大大地增加了在单位时间内颗粒对受热面的撞击率,我们知道,管壁表面的磨损量是与撞击率以及流速成正比:

T∝(ηkω3/2g)τ

式中:T ??管壁表面的磨损量,单位为g/m3 τ??时间,单位为s g??重力加速度,g=9.18m/s2 ω??飞灰速度,可认为等于烟气流速,单位为m/s κ??烟气中飞灰浓度,单位为g/m3 η??飞灰撞击率

因此,布置在炉膛内的悬吊受热面,特别是第一、二排的管束,磨损较严重。

锅炉运行一年后大修检查,发现两侧水冷屏的第一排管束与侧墙相对的一面磨损较为严重,经测厚最薄壁厚为5.2mm。3.1.1.3 炉膛出口(分离器进口)

炉膛出口处烟气流流通截面骤降,并使粒径d50为40~70μm的固体颗粒加速到最大速度,以满足分离器所需分离临界速度,不同结构的分离器有着各自不同的临界速度,据我们了解,一般这一临界速度达25m/s左右,这样高速度的固体颗粒在炉膛出口转弯处(俗称靶区)将产生较大的离心力,强烈地冲刷炉膛出口管,同时,高密度的灰粒在与管表面碰撞时,使金属显微颗粒克服分子之间的结合力,使本已处在高温处的局部管表面温度升高引起该处金属变软,使金属颗粒更易与母体分离产生磨损。

锅炉运行一年后大修检查,发现分离器入口两侧水冷壁磨损较为严重,特别是与耐磨料结合处的一根水冷壁管冲刷出现许多凹坑,深度达2~3mm。3.1.2 设备改造情况

针对炉内受热面磨损严重的问题我们采取了如下措施:

(1)将水冷壁两侧的床温测点(约标高26米)拆除,将测点两侧的让管进行取直。(2)我们在过热屏的迎火面加装了部分耐磨鳍片,鳍片的两端与管子的角度磨成150斜角。(3)考虑到流化床锅炉的特殊性和受热面磨损的普遍性,我们利用大修机会对炉内部分受热面进行了喷涂。喷涂位置为炉膛四角水冷壁、密相区往上1.5米、焊缝两端各0.2米,顶棚往下1.5米和分离器入口两侧相对应的部位。3.1.3 运行采取的措施

(1)循环流化床锅炉受热面磨损速率与颗粒速度的三次方和颗粒粒径的平方呈正比,为了减少磨损必须严格控制入炉煤的粒度和热值,细碎机出料粒度总体标准如图(3-2)所示:

对煤粉粒度的具体要求如表(3-1):

图3-2

表3-1煤粉粒度控制表

筛孔尺寸

(mm)10mm 8mm 6mm 3mm 1mm

100% 98~100% 95~100% 78~90% 38~60%

通过量占总量比例(%)

超过上表所示的范围,视为不合格。

(2)对入炉煤的热值进行严格的取样化验,确保入炉煤的低位发热量高于校核煤种即大于19500KJ/Kg,发热量小于该值的煤种一律进行掺烧,防止煤量过大。

(3)由于我们公司现在的煤种的热值很难达到校核煤种的热值,为了减少飞灰磨损带来的危害,保证烟速在规定的范围内,决定对入炉煤进行定量燃烧,严格将燃料耗量控制在69t/h以下。

(4)炉内受热面的磨损与运行人员的调整有很大的关系,一、二次风的配比和物料浓度对受热面的磨损有直接的影响,在保证炉内床料流化良好的前提下,减小总风量,145MW合理风量在450t/h左右。

(5)在保证料层差压合理分布的前提下,降低炉膛差压,145MW合理床压在13.4~14.5KPa左右。

(6)根据燃烧工况,合理控制风量配比,减小“多余”风量的送入。(7)煤、风调整应缓慢均匀,精心监视,降低炉内的扰动。(8)高负荷,在保证蒸汽参数前提下,控制外循环物料量。(9)根据排渣粒度每360运行小时置换换床料一次。

(10)开展各种活动,不断优化燃烧调整,丰富经验,提高机组安全、经济性。3.2 炉内耐磨料损坏

非金属耐磨材料,由于热震稳定性好,施工维修简单,是循环流化床锅炉中应用最多的耐磨材料,从整台锅炉的经济比较来说也占了相当大的比例。非金属耐磨材料有定形制品与不定形制品,定形制品以预制品和砖为主,而砖在循环流化床锅炉中大面积的耐磨墙体应用较多,如分离筒、回料器,尾部烟道等,目前常用有硅线石砖、锆铬刚玉砖、碳化硅砖等。不定形制品有喷涂料、耐磨耐火可塑料、耐磨耐火捣打料、耐磨耐火浇注料等。

耐磨耐火可塑料,是由耐火骨料、结合剂和液体组成的混合料。交货状态为具有可塑性的软坯状或不规则形状的料团,可以直接使用,主要结合剂可以为陶瓷、化学结合剂。以捣打(手工或机械),震动、压制或挤压方法施工,在高于常温的加热作用下硬化,耐磨耐火捣打料的组成基本与耐磨耐火可塑料相同,所不同是耐磨耐火捣打料,一般来说均在现场调配,用多少配多少,最适用于用量不大的修补,而耐磨耐火可塑料,不宜久存,特别是开封后极易硬化,故较适用于用量较大的批量施工。如悬吊在炉膛内的受热管束,使用现存的可塑性软坯在管节距之间捣打挤压,即密实又施工方便。

耐磨耐火浇注料是由耐火骨料和结合剂组成的混合料。交货状态为干状,加水或其他液体调配使用。主要结合剂为水硬性结合剂,也可以采用陶瓷和化学结合剂,以浇注、震动的方法施工,无需加热即可凝固硬化。

保温耐磨料的损坏主要集中在炉内密相区、过热屏底部、旋风分离器入口及切向位置、旋风分离器的入口伸缩节、回料器的平行位置,其损坏主要有脱落和磨损两种情况,造成上述损坏的原因是多方面的。3.2.1 耐磨料损坏的原因

耐磨料的损坏主要有以下原因造成:

(1)有些耐磨料其本身的成分配比不符和要求,使耐磨料的稳定性达不到设计要求,表面硬度减弱以及粘结力降低,耐磨料极易磨损和脱落。

耐磨材料的的物理化学性能非常重要。一般来说,耐磨材料的耐压强度、抗折强度、耐磨性、热震稳定性和重烧线变化是主要的考虑指标,同时,高温耐压强度指标也要考虑。有许多种耐磨材料结合剂须1200℃以上温度烧结后才有一定强度,在1200℃以下使用,因耐火材料达不到烧结温度而导致强度很低,因此,在流化床锅炉上选用效果不理想。

(2)施工工艺不良也容易造成耐磨料的损坏,在施工中没有严格按照料水(或磷酸结合剂)浓度进行合理配比,耐磨料中水分较大或者没有严格按照烘炉特性曲线进行烘炉、施工时欲留的膨胀缝不符和要求或膨胀缝设计存在问题等,在运行中极易造成耐磨料大片脱落。(3)设计结构不合理也会造成耐磨料脱落,例如:抓钉、拉砖钩数量较少以及设计强度较低都会造成耐磨料大面积脱落。从目前情况来看,我公司两台循环流化床锅炉的分离器总体设计不是很合理;该墙原设计厚度304mm,内层为150mm厚高强度耐磨耐火砖,外层为154mm厚的耐火保温浇注料,用拉砖钩将耐火砖拉住。该结构的墙保温效果差,经常造成墙体塌落,现在设计中常设计成棋盘式结构,效果较好。

(4)运行操作不当也会造成耐磨料脱落,耐磨材料随温度的升降,产生膨胀或收缩,如果此膨胀或收缩受到约束,材料内部就会产生应力。耐磨材料属非均质的脆性材料,与金属制品相比,由于它的热导率和弹性较小、抗拉强度低、抵抗热应力破坏能力差、抗热震性较低,在冷启动锅炉和停炉冷却时如果温升较大,就会造成耐磨料的受热不匀产生裂纹而脱落。3.2.2 针对耐磨料损坏所采取的措施

(1)对耐磨料进行了招标,选择有资质的、信誉和质量较好的耐火材料厂家进行施工,在施工中严格施工工艺,加强质量监督,对耐磨料的成分进行不定期抽样检查,对不合格的产品一律拒绝使用。

(2)旋风分离器切向位置的耐磨料,飞灰碰撞积率最大、烟速和烟温最高,磨损最严重、三维热膨胀最大。我们对该处的耐磨料进行了施工改造,将原有的耐火砖拆掉(部分脱落)增加了

Y型抓钉,并在抓钉上面焊接了φ6mm的不锈钢网,外层用60mm的高温硅酸铝棉毡,中间用微孔保温砖,内层附以150mm厚的耐磨捣实料,经过8个多月的实际运行,保温效果和强度都非常好。

(3)回料器的水平段耐磨料经常脱落,致使该处的铁板烧红,我们利用大修机会对该处进行了改造:在耐磨料最内层加装了成型的碳化硅预制板,该板耐高温,抗磨损冲刷,使用效果比较好。

(4)对屏式过热器和水冷屏在下部增加了销钉数量。

(5)为了避免出现耐磨料脱落的现象发生,每次停炉和启动,都应严格按照温升曲线进行操作。

3.3 过热器超温

#

3、4炉自投产以来,屏式过热器冷段和热段出口温度一直偏高,在135MW冷段出口温度最高达475℃,比设计值高出50.8℃在一级减温器减温水量26.1t/h时,热段出口温度最高达534℃,比设计值高出40.6℃,其中#

3、4炉屏式过热器高温段部分管子由于过热出现了球墨化现象。3.3.1 原因分析

(1)在锅炉设计时,由于设计人员比较保守,造成炉内过热器受热面较多。(2)在锅炉设计时,没有考虑分离器出口混合室内悬吊管和隔墙管的辐射吸热量。(3)燃用煤种偏离设计煤种较大。(4)运行中风量配比偏差较大。3.3.2 设备改造

(1)#3炉分别将热屏和冷屏去掉了一屏,并在下部增加了部分耐磨料。

(2)#4炉在冷屏和热屏底部增加了部分耐磨料,以减少冷屏和热屏的整体吸热量。(3)为了减少屏过管子的热偏差,分别在每屏出口前后两侧的管子增加了部分耐磨料。(4)为了减少悬吊管和隔墙管处的辐射热,分别将#

3、4炉分离器出口混合室内悬吊管和隔墙管加装了隔热护板。3.3.3 运行采取的措施

(1)

点火过程中,运行油枪应雾化着火良好,燃烧器风量适当;冲转并列时,调整回油门开度、调节ⅠⅡ级旁路,必要时,开启向空排气门,维持主汽压力稳定,保证屏过壁温不超温,必要时减少油枪投入数量。

(2)

并列后初期升负荷,保持高压调门全开,使汽压、汽温、负荷按规程规定上升,宁慢勿快,监视屏过壁温变化。

(3)

初期投煤执行“脉动”给煤的规定,根据床温变化率、氧量变化,确已着火方可连续少量给煤,否则稳定电负荷提高床温后重新投煤。给煤量缓慢均匀增加,使汽压稳定升高,注意一二次风量的调整。避免可燃成分炉内积存燃烧,床温失去控制。

(4)

根据汽温变化情况,及时投入、调整减温水,特别注意一级减温水的调整,保证屏过热段出口汽温、壁温不超温。

(5)

给煤稳定后,根据床温变化率,床温升至600℃以上,及时逐一切除油枪运行,注意停止大油枪对床温的影响。

(6)

升负荷过程中,注意炉膛进出口差压、炉膛上下床压、回料器压力的变化,合理调节一二次风比例,及时排渣置换床料,保证稀相区燃烧份额,控制床温及升负荷速度。(7)

低负荷时,一次风比例大,随床温升高,一次风比例降低,合理调节一二次风比例及二次风门开度,减小各层床温与分离器进出口烟温差,减小两侧烟温差。

(8)

防止过热器、再热器壁温超温,应烟气侧与蒸汽侧调整相结合;升负荷过程中,应以烟气侧为主,调整减温水为辅。

(9)

高负荷时,严格按规程规定调节床温,均匀给煤,根据煤质,适当提高床压,通过控制床温控制屏过壁温超温;合理调节一二次风比例及二次风门开度,保持氧量,通过控制分离器出口烟温及两侧偏差防止对流过热器、再热器壁温超温。

(10)高负荷时,注意协调一、二级减温水比例,保证屏过出口、再热器出口、过热器出口汽温、壁温在规定范围内。

(11)高负荷时,加强再热器、过热器吹灰,不允许为汽温而造成壁温超温,当发生保持汽温额定与壁温超温相矛盾时,优先保证过热器、再热器壁温不超温,尽可能提高汽温,并满足主、再热汽温差<27℃,主(再热)汽温A、B两侧之差<14℃的规定。

(12)当发现过热器壁温、再热器壁温接近上限、或超温时,加强责任心,及时调整,不等不靠;当调整无效,壁温超温与机组负荷相矛盾时,减小锅炉负荷并汇报值长。(13)稳定运行工况下,主、再热汽温保持正常,不允许超过540℃的现象出现。减温水调整应缓慢均匀,避免汽温不允许大幅度变化。

(14)当发生断堵煤恢复时,缓慢增加给煤量,控制床温、汽压缓慢稳定上升,并注意对汽温、壁温的监视。

(15)当发生高加解列等异常情况时,可适当减负荷,控制床温上升速度,防止汽温、壁温超温。

3.4 冷渣器排渣困难

本台锅炉共设置两台流化床冷渣器,分布于炉膛下部两侧,布置在零米层,采用以水冷为主、风冷为辅的双冷却形式,锅炉总灰量为14188.4kg/h,一台冷渣器的设计底灰排出量为锅炉总灰量的50%,一台冷渣器即能满足锅炉正常运行的需要。冷渣器的进渣温度为880°C,经过冷渣器的两个冷却室的冷却,落渣口的出渣温度为150℃,而冷却室蛇形管中的水温从35℃加热到70℃左右再引出到汽轮机的回热系统。冷却水的进口温度为35℃,压力为1.2MPa,流量为80000kg/h。设计从冷渣器侧面的正常排渣口排渣。

运河发电厂自投产以来,频繁发生冷渣器堵渣现象,炉膛床料无法排出,造成床压升高,被迫减负荷进行处理;后期出现冷渣器结礁现象,造成停炉。3.4.2 原因分析

造成冷渣器频繁堵渣的原因主要有以下三点: 3.4.2.1 高温结礁(1)

床温过高造成结礁

(2)

细碎机未及时调整,粗细煤粒的分布不合理,造成密相区燃烧份额加大,床温提高结礁。

(3)

点火过程中投入冷渣器运行,给煤落入冷渣器内,使冷渣器内发生煤粒再燃,造成高温结礁。3.4.2.2 低温结礁

(1)

停炉时床料中煤粒未完全燃烧尽,产生低温结焦,焦块进入冷渣器内。(2)

配风不合理和锅炉长期低负荷运行,炉膛流化不良可能造成炉膛局部结焦。(3)

炉膛内流化不良,存在部分死区,易使低温焦块生长。

(4)

低温焦块进入冷渣器中,在冷渣器停运及吹扫过程中,以其为内核滚雪球似的长大,形成低温焦。

3.4.2.3 其它原因结焦

(1)锅炉本身缺陷造成的冷渣器堵塞:如炉膛内有渣块、落渣管处的风帽堵塞、落渣管中耐火材料脱落等易造成结焦堵塞。

(2)冷渣器设计缺陷:冷渣器中间隔墙过高,较大的渣料由于流化困难,很难被从Ⅰ室吹到Ⅱ室。

(3)渣器堵塞后,不能与炉膛隔离,运行中没有清渣手段。(4)运行调整过程中,冷渣器运行关键参数的监视不到位。3.4.3 设备改造情况

(1)将冷渣器内的中间隔墙降低,保留5块耐火企口砖,高度约400mm。目的是便于主室内的渣进入副室,从而自正常排渣口排出。

(2)降低正常排渣口的高度。即:将标高从4.733米下降至3.84米。做法:a、将4.733米高处的正常排渣口用厚度8mm的不锈钢板(1Cr18Ni9Ti)满焊封住。B、标高3.84米处在冷渣器侧墙用风镐开孔ф273mm,孔的直径可适当稍大,然后用ф273x10的钢管与原正常排渣管道相连。管道规格:ф273x10,材质:Q235-A。管道与冷渣器外箱体之间圆周焊接,焊缝高度8mm。

(4)

在冷渣器回风管上增加手动隔绝门。增加该手动门有两个作用:一是当炉膛排渣口堵塞时可以将该门关闭,利用冷渣风机的风将排渣口鼓开;二是当冷渣器内结礁或冷却水管道泄漏时可以将该门关闭后进行事故处理。

(5)

在冷渣器底部加装了压力测点,根据压力合理控制排渣时间。3.4.4 运行采取的措施:

(1)严格控制床温,将床温控制在850℃~900℃,严禁床温超过950℃。

(2)每天对入炉煤进行检验,严格控制入炉煤粒度的均匀性,并保证粒度不大于10mm,发现有超标情况时应及时更换细碎机锤头。

(3)冷渣器投运时,选择床温达到600℃时,应平缓投入,保证床料得到良好的流化和床料中的煤粒燃尽,使冷渣器不致受到过度热应力的损坏。

(4)在停炉熄火后,应加强炉内通风以保证床料中的煤粒燃尽和得到充足的冷却,并严密监视床温不得超过400℃,如果发现有生温倾向应加大通风量。(5)合理控制一、二次风配比,保证床料得到充分燃尽和流化。

(6)合理控制A、D给煤机的进煤量,使A、D给煤机的给煤量尽量小一些,一方面可以减少排渣的含碳量,另一方面可以减少侧墙水冷壁的磨损。

(7)实行间断排渣并保持冷渣器内的床料在一定位置,以减少排渣的可燃物含量和使床料得到充分的冷却。3.5 给煤机堵煤

本台锅炉共设四台给煤机两个原煤仓,一个原煤仓分别对应两台给煤机,自标高30米至22米为一体,自22米向下至18.5米分成两个金属煤斗分别与两台给煤机连接。每台给煤机所连接的煤斗设有4台空气炮。原煤仓设计形状为方锥型,12mm厚的Q235钢板,内衬3mm不锈钢板;煤斗下部收口为方型,安装电动插板门,由“天方地圆”收成圆筒,接入给煤机。自投产以来,频繁发生给煤机堵煤、断煤现象,仓壁挂煤严重,虽经空气炮疏松但无明显效果,只能用人工进行敲打和投通。特别是雨季煤湿,堵煤现象更为严重。3.5.1 原因分析

经过认真观察分析,认为堵煤现象的频繁发生主要有以下原因造成:(1)

入炉煤含水量较大,增加了煤的粘度。实践证明:当煤的含水量在8%~15%范围内粘性最大,煤在煤仓中极容易结块产生堵煤现象。

(2)

煤仓和入口电动门结构不合理:煤仓设计为方锥型,入口电动门为方型结构,两台给煤机共用一个原煤仓。中间分叉后变两个煤斗接入给煤机,由于仓壁四角产生“双面摩擦”和挤压,越接近下煤口部位摩擦力和挤压力会越大,所以在四角部位积煤特别严重。电动插板门后为“天方地圆”结构,由于设计时预留高度太短,所以收缩太快,造成坡度减小容易堵煤。

3.5.2 设备改造情况

(1)

对原煤仓进行了改造,从原煤仓的分叉处往下由方型改为圆形结构,分三节形成双曲线型结构,内贴高分子PST板,去掉空气炮,每个煤斗对称加装了由北京派通公司生产的疏松机。

(2)

将给煤机入口电动插板门更换为双向液压门,该门为圆形桶体结构,采用液压双向插板设计,相对开关。由于门的内壁为圆柱型结构,从而减少了煤和门壁的摩擦,避免了门后堵煤现象的发生。3.5.3 运行采取的措施

(1)加强入炉煤的掺配,严格入炉煤的化验制度,将入炉煤的水分控制在8%以内。(2)每周利用低负荷运行时,进行一次煤仓低煤位燃烧,以便于将积在煤仓四周的积煤“清理”干净。避免长期满煤运行造成的四角积煤。

(3)

加强上煤巡检制度,杜绝杂物进入煤仓造成堵煤。

(4)

如果长时间停炉,必须进行空仓燃烧处理,防止煤在仓内长时间堆积造成结块积煤。

(5)

遇到雨天和煤湿时,煤仓上煤应采取低煤位、勤上煤的办法,始终让煤位在较低状态下运行,避免湿煤在仓中结块。3.6 非金属膨胀节的损坏

就SG?440/13.7?M562循环流化床锅炉总体而言,炉膛与旋风分离器进口烟道之间、分离器与旋风分离器出口烟道之间、出口烟道与尾部前墙入口之间、分离器与直管之间、回料器入炉斜管与回料弯管之间、冷渣器进渣管与冷渣器箱体之间及回料管与箱体之间皆有非金属柔性膨胀节,以解决从冷态到热态两者之间的三维的相对位移。自投产运行以来,炉膛与旋风分离器进口烟道之间的非金属膨胀节,经过几次停炉检查发现伸缩节导向板部分变形、烧坏,且磨损较为严重,以至于部分缝塞和高温棉被烟气吹跑,虽经多次处理但始终没有达到满意的效果。3.6.1 原因分析

(1)现场施工时,没有严格按照施工要求进行施工,伸缩缝内的缝塞质量较差致使缝塞经常被抽走。

(2)所用的导流板耐温性能较差,经常发生过热变形。

(3)

运行操作不当造成该处“负压”过大,致使缝塞被烟气带走。(4)

伸缩节前后耐磨料脱落,造成伸缩缝内缝塞失效。3.6.2 其它防范措施

(1)加强运行监督,确保分离器入口的压力保持在“微正压”运行。

(2)利用停炉机会对伸缩节进行检查,及时清理伸缩缝内的积灰,发现缝塞和导流板损坏时要及时进行更换处理,防止缺陷扩大。

(3)伸缩节前后由于运行膨胀不匀会出现纵向裂纹,每次停炉时要对裂纹中的灰及时进行清理,避免炉运行时膨胀受限而损坏伸缩节。3.6.3 设备改造情况

(1)伸缩节仍然采用上锅厂原设计的“Z”型结构,伸缩节前两侧墙比伸缩节后增加15mm厚度,并采用平滑过渡。

(2)伸缩缝内部缝塞必须固定好,并用φ5mm销钉插入缝塞中,向火侧采用φ2mm的不锈钢网制成的“U”型护网,最后焊上导流板。不锈钢网和导流板材质为1Cr25Ni20Si2耐高温材料。4 结

循环流化床锅炉因其具有燃料适应性广,低温燃烧氮氧化物排放量低,可实现炉内脱硫等优点,适应了当今社会对能源与环境保护同时提出了更高要求的潮流,因此,近年来循环流化床锅炉得到了迅猛的发展,循环流化床锅炉的容量也日趋扩大,本文所述均为我公司两台440t/h循环流化床锅炉运行一年以来出现的问题讨论,随着对流化床锅炉认识的加深和经验的进一步积累,流化床锅炉的安全可靠性和稳定性也得到了很大提高,希望本文能够给其它同类流化床锅炉的工作者提供有益的帮助,同时,也希望各位同行就本文的不足之处给予指正和提出宝贵的建议

第四篇:130th循环流化床锅炉运行规程

130t/h循环流化床锅炉运行规程(试行)

批准: 审核: 编写:

前 言

本规程根据以下资料编写:

1、济南锅炉厂YG-130/3.82-M6型循环流化床锅炉《设计说明书》和《使用说明书》。

2、《电业安全工作规程》(热力机械部分)。

3、济南明水热电有限公司YG-75/3.82-M1型循环流化床《锅炉 运行规程》。本规程的编写过程中,综合吸取了许多厂家130t/h循环流化床锅炉的运行经验结合本公司75t/h循环流化床锅炉的运行实际情况和新建130t/h循环流化床锅炉的特点,力求使本规程规范、实用,具有可操作性。

4、锅炉运行管理制度同#6、7、8炉,本规程不再编制。

本规程为使用版本,待锅炉正常运行后,执行的过程中有补充改进建议,请反馈给生产部,按规定予以重新修订,使本规程得到不断的完善。

2005年10月1日

目录

第一篇 设备技术规范

第一章 锅炉机组的简要特性

第二章 锅炉技术规范

第二篇 锅炉机组的启动

第一章 锅炉机组启动前的检查与准备

第二章 锅炉点火、升压及并炉

第三篇 锅炉运行调节

第一章 锅炉运行参数的控制与调整

第二章 锅炉运行中的监视及调整

第三章 锅炉的排污

第四篇 锅炉压火和停炉 第一章 锅炉压火

第二章 锅炉的正常停运

第五篇 锅炉机组的故障处理 第一章 总则

第二章 事故分析及处理

第一篇

设备技术规范 第一章 锅炉机组简要特性

一、锅炉简介

1、锅炉概况:

(1)型号:YG130/3.82—M6(2)制造厂家:济南锅炉集团有限公司(3)制造日期:2005年7月

(4)安装日期:2005年7月-10月(5)投产日期:2005年11月

(6)安装单位:山东省建设第三安装有限公司

2、设备概述:

本锅炉是一种自然循环水管锅炉,采用由燃烧室、炉膛、水冷旋风分离器、返料器组成的循环燃烧系统,炉膛为膜式水冷壁结构,过热器分高、低II级过热器,中间设I级喷水减温器,尾部设两级省煤器和一、二次风预热器。设备简介:

(1)锅筒

锅筒内径为1500mm,壁厚为46mm筒体全长10566 mm,筒身由20g钢板卷焊而成,封头是用同种钢板冲压而成。

锅筒内部装置由旋风分离器、顶部分离板、连续排污管、加药管等组成。旋风分离器直径为φ290,共40只。

由旋风分离器出来的蒸汽穿过上部波形板箱,再经锅筒顶部波形板分离器箱,然后由蒸汽引出管到过热器系统。在锅筒顶部布置有波形板分离箱做为细分离,并在波形板分离器下装有12根水管,把分离箱中带进的水分再送回锅筒的水容积之中,以保证蒸汽品质。在集中下降管进口处布置了十字挡板,消除下降管带汽及抽空现象,锅筒上除布置必需的管座外,还布置了再循环管座,吹灰管座,备用管座。为防止低温的给水与温度较高的锅筒筒壁直接接触,在管子与锅筒筒壁的连接处装有套管接头。给水进入锅筒之后,沿锅筒纵向均匀分布。

锅筒内正常水位在锅筒中心线下100 mm处,最高、最低安全水位距正常水位为上下各75mm。锅筒装有两只就地水位表,此外还装有两只电接点水位表,可把锅筒水位显示在操作盘上并具有报警的功能。另外,锅筒上配有备用水位管座,用户可用于装设水位记录仪表水位冲量等仪表,可实现对水位的自动控制、自动记录。为提高蒸汽的品质、降低炉水的含盐浓度,锅筒上装有连续排污管和炉内水处理用的加药管,连续排污率为2%。

锅筒通过两套悬吊装置悬挂于钢架上,可沿轴向自由胀缩。(2)水冷系统

炉壁、炉顶均由膜式水冷壁组成,通过水冷上集箱上吊杆悬挂于钢架上。炉膛横截面为3972×7750mm 2;炉顶标高为31380 mm,膜式水冷壁由φ60×5和6×45 mm扁钢焊制而成。燃烧室为φ60×5的膜式壁管组成,其上焊有销钉,用以固定耐火材料。燃烧室上部与炉膛膜式水冷壁相接,下部与水冷风室及水冷布风板相接。水冷风室由膜式水冷壁钢管组成,内焊销钉以固定耐火材料。水冷布风板由φ60的钢管及6×45扁钢组焊而成,在扁钢上开孔与钟罩式风帽相接。

为了增加受热面,使锅炉有一定的超负荷能力,在炉膛内增加3片自然循环的翼形水冷壁,每片水冷壁由16根φ60的钢管及6×20.5扁钢组焊而成,为减小锅炉管子磨损,整体弯头由耐磨浇筑料防护。

除翼形水冷壁外,炉膛部分分成左、右、前、后四个水循环回路,引汽管由φ133×6组成及φ108×4.5钢管组成,集中下降管由5根φ273×12钢管组成,在每隔集箱装有排污阀门以便定期排污。

为了降低返料温度,降低炉墙重量,缩短起炉时间,增加密封信及运行的可靠性,设置了两个水冷旋风分离器。

水冷旋风分离器有以下特点:

1、耐火材料用量降低,从而使锅炉承重减轻,用户耐火材料费用减少。

2、锅炉启动时间明显缩短。

3、与炉膛相对膨胀量减少,增加了密封的可靠性。

4、锅炉本体耗钢大幅增加。但用户成本降低明显。

每个分离器由120根φ51×5管子和上下两个环形集箱焊接而成,管子上焊有销钉以敷设高强度耐火浇筑料,整个分离器有上集箱支吊向下膨胀,下集箱与固定料腿设有膨胀节以保证密封。

旋风分离器内衬采用耐磨、隔热材料。耐磨、隔热材料不修补的运行周期为二年,二年后每年的更换量不超过总重量的5% 在锅炉正常运行的条件下,环境温度为27℃时,旋风分离器外表面温度不大于50℃,当环境温度大于27℃时,旋风分离器外表面温度允许比环境温度高25℃。

旋风分离器下端回料立管结构合理,确保分离效果,并避免噎塞或气流扰动影响分离效果。旋风分离器上部烟气出口即中心筒采用耐磨耐高温材料制造,出口管延长进旋风分离器筒体一定长度以阻止烟气短路。

以上所用钢管材料均为20(GB3087-1999)无缝钢管。(3)过热器

本锅炉过热器分II级,分为保护旋风筒出口及尾部烟道顶部的炉墙,在此部位特别设有炉顶包覆管,包覆管下部含有销钉,其上固定耐火浇筑料,过热蒸汽从锅筒由连接管引入顶棚管进口集箱再进入吊管进口集箱,经悬吊管引入吊管出口集箱进入低温过热器加热后,分别进入两个喷水减温器后引入高温过热器进口集箱,经高温过热器管系加热后进入高过出口集箱。再由连接管引入集汽集箱,经主汽阀送至汽轮机。

低温过热器管系、高温过热器管系均由φ38×4的管子组成,为降低磨损和集灰均采用顺列布置。每级过热器迎风第一排管都设有防磨罩。过热器减温系统采用喷水减温,减温器置于两级过热器之间,这样既可保证汽轮机获得合乎要求的过热蒸汽,又能保证过热器管不致于因工作条件恶化而烧坏。

为保证安全运行和传热效率,低温过热器采用逆流布置,高温过热器采顺流布置,低温过热器采用20(GB3087-1999)无缝钢管。高温过热器高温段采用15Cr2MoG的低合金无缝钢管。

(4)省煤器

省煤器系II级布置。采用螺旋鳍片管省煤器。

均为φ32×4的20G无缝钢管弯制的蛇形管,给水沿蛇形管自下而上,与烟气成逆向流动。螺旋鳍片管共45排,顺列布置,横向节距70mm,横向节距100mm,由省煤器管支架支撑在空心梁上。

为保护省煤器,在汽包和下级省煤器之间设有再循环管道,以确保锅 炉在启动过程中省煤器管子的水能进行自然循环。

锅炉尾部烟道内的省煤器管组之间,均留有人孔门和足够高度得空 间,以供检修之用。

省煤器入口集箱设置牢靠的固定点,能承受主给水管道一定的热膨胀 推力和力矩。(5)空气预热器

锅炉采用管式水平布置空气预热器。空气预热器为两级,三流程布置,空气分别由一次风机和二次风机从上下两个入口空气预热器,上面入口为二次风空气预热器,下面入口为一次风空气预热器,两级空气预热器除末级外均用φ41×1.5的焊接钢管制成,末级采用搪瓷管,以缓解冷端低温腐蚀。烟气在管内自上而下流动,空气在管外横向冲刷,二次风经过三个行程后进入二次风管,一次风经三个行程进入一次风管。

一、二次风预热温度分别达到150℃。空预器设置安装露点测量装置的预留位置。

空预器每级漏风系数保证第一年运行不超过0.03,长期运行不超过0.05。空预器下部烟风接口距地面有足够的净空,供烟风道及除灰设备的布置。(5)燃烧系统

燃烧系统由燃烧室、炉膛、旋风分离器和返料器组成。炉膛下部是密相料层,最低部是水冷布风板,在布风板上的鳍片上装有耐热铸钢件风帽,该风帽为钟罩式风帽。锅炉燃烧所需空气分别由一、二次风机提供,一次风机送出来的风经一次风空气预热器预热后,由风室通过安装在水冷布风板上的风帽进入燃烧室。燃煤经设在炉前的4条刮板给煤机送入燃烧室落煤口上方设置了播煤风。

二次风约占总空气量的50%(根据煤种稍有区别),经过空预器预热后,通过喷嘴分上、下两层进入炉膛,以利于燃烧调整和控制氮氧化物的排放。整个燃烧是在较高流化风速下进行,炉温控制在800~900℃,含灰烟气在炉膛出口处分左右两股,切向进入两个旋风分离器,被分离的细颗粒经返料器返回炉膛循环再燃烧,离开旋风分离器的烟气经过热器进入尾部烟道,随烟气排走的微细颗粒可由锅炉后部的电除尘器收集。

旋风分离器采用特殊成熟结构,可保证分离效率≥99.5%。由于分离效率高,可保证炉膛内有足够的循环灰量,减少尾部烟气含灰量,有利于尾部受热面的防磨。为保证返料器的工作可靠,进入返料风室的高压风需单独高风压、低风量风机以保证返料器畅通、降低循环灰在返料器内的再燃率,同时在分离器处布置水冷系统,以降低循环灰温度。每个水冷套由管子和上下两个环形集箱焊接而成,管子上焊有销钉以敷设高强度浇注料,整个水冷套由下集箱支撑在返料器耐火材料上整体向上膨胀,上集箱与锥体固定耐火材料处设有膨胀缝且上集箱引出管与护板设有膨胀节以保证密封。

燃烧后的灰渣,较大颗粒可经炉底4个φ159的冷灰管排走,而较小颗粒可以从旋风分离器下的返料器的细灰管排走。

本炉为床下动态点火,在风室后侧布置点火器,点火用油为0#轻柴油,油压为2.45Mpa。(6)炉墙

由于采用膜式水冷壁,炉膛部分采用敷管轻型炉墙,旋风分离器、斜烟道、炉顶和尾部烟道用耐火砖或耐火混凝土和保温层砌成,其重量分别通过钢架传到基础。考虑到炉墙受热后的膨胀,对于炉墙面积较大的部分及其接合处设有膨胀缝,为了保证炉墙金属及浇注料安全运行,炉墙升温和降温速度应控制在每小时100~150℃之间。(7)锅炉管路 锅炉采用单母管给水,锅炉给水通过操纵台,然后进入省煤器,从省煤器出口集箱出来后,由汽包给水管引入汽包。

在汽包和省煤器之间装有不受热的再循环管,为保证锅炉点火启动和停炉冷却过程中省煤器内水的流动,在点火和停炉过程中不向汽包进水时,开启再循环管路上的阀门,这时由于省煤器管内水温较高,而产生自然循环,使省煤器管子得到冷却。在汽包上装有连续排污管,在各水冷壁下集箱分别装有定期排污管,在各需要疏水的部位还装有疏水用的阀门和管路。(8)锅炉脱硫

锅炉在燃用含硫量较高的燃料时,脱硫是通过炉前螺旋给煤机向炉内添加0~2 mm的细粒石灰石来实现的(现由燃料添加),由于本燃烧系统采用低温燃烧,该温度区对脱硫最有利。细粒石灰石在高流化风速下在整个炉膛内与烟气充分混合接触,又经分离器和返料器多次循环利用,石灰石利用率高,脱硫效率高。煤中所含硫分在燃烧后被固化在炉渣中,随炉渣排出。

锅炉采用露天布置,运转层高为7米,锅炉标高从零米算起,锅炉的构架全部为金属构架。

3、主要参数:

额定蒸发量

130t/h 脱硫效率

87% 额定蒸汽压力

3.82MPa 钙硫比

2—2.3 额定蒸汽汽温度

450℃

燃料消耗量

30910 Kg/h 给水温度

150℃

燃料的颗粒度要求 ≤13mm

循环流化床锅炉运行简答题

第一篇:循环流化床锅炉运行简答题 1、锅炉辅助系统包含哪些? 煤粉制备系统;锅炉通风系统;烟尘处理系统;锅炉水处理系统...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部