电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

人教三年级数学下全册教案

栏目:合同范文发布:2025-01-30浏览:1收藏

人教三年级数学下全册教案

第一篇:人教三年级数学下全册教案

义务教育课程标准实教科书

三年级数学教案

第一课时

下册

教学内容:P4/例

1、例2(只含有同一级运算的混合运算)教学目标:

1.使学生进一步掌握含有同一级运算的运算顺序。

2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。教学过程:

一、主题图 :引入观察主题图,根据条件提出问题。

(1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的? 组织学生提问并对简单地问题直接解答。(2)根据图中提出的信息,你能提出哪些问题,怎样解决? 通过补充条件,继续提问。

1.滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰? 2.“冰雪天地”3天接待987人。照这样计算,6天预计接待多少人? 等等。先小组交流,再全班交流。提示学生可以自己进行条件的补充。

二、新授

1.小组4人对黑板上的题目进行分配解答。

引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式算。2.小组内互相说说你是怎样解答的? 教师巡视并对学生的叙述进行指导。

3.全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。(1)71-44+85

=27+85

=113(人)

71-44表示中午44人离去后还剩多少人,再加后到来的85人,就是现在滑冰场有多少人。(2)987÷3×6

6÷3×987

=329×6

=2×987 =1974(人)

=1974(人)

第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,再乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)

第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。

引导学生进一步理解“照这样计算”的意思。

强调:可用线段图帮助理解。教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。4.巩固练习

(1)根据老师提供的情景编题。A、加减混合乘车时的上下车问题,图书馆的借书还书问题,B、速度、单价、工作效率 小组合作,减少重复练习。(先个人编题,再两人交换。)

(2)P5/做一做1、2 这节课我们解决了很多问题,你们都有什么收获? 教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)运算顺序为已有知识基础,让学生进行回忆概括。

四、作业

P8/1—4 板书设计:

四则运算

(一)1.滑冰场上午有72人,中午有44人离去,2.“冰雪天地”3天接待987人。照这 又有85人到来。现在有多少人在滑冰?

样计算,6天预计接待多少人?

72-44+85

(1)987÷3×6

(2)6÷3×987

=27+85

=329×6

=2×987

=113(人)

=1974(人)

=1974(人)

运算顺序:在没有括号的算式里,如果只有加、减法

或者只有乘、除法,都要从左往右按顺序计算。

反思:学生通过学习,基本掌握同级运算中两种情形的运算规则,准确率也较高。

第二课时

教学内容: P6/例3 P10/例4(含有两级运算或有括号的混合运算)教学目标:

1.使学生进一步掌握含有两级运算的运算顺序。

2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,学会用两步计算的方法解决一些实际问题。

3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。教学过程:

一、主题图引入

观察主题图,找出条件,提出问题。

引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?

二、新授

就学生提出的问题,出示例3 星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱?

(1)学生在练习本上解答此问题。

(2)同桌两人说说自己是怎样解答的。

(3)汇报:教师根据学生的汇报进行板书。

(一)24+24+24÷2

= 24+24+12

= 48+12

= 60(元)24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。

(二)24×2+24÷2

=48+12

=60(元)

24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。这样的综合算式的运算顺序是什么? 学生总结运算顺序。

买3张成人票,付100元,应找回多少钱?等等。

出示例4 上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员? 小组讨论,独立完成。

小组内互相说说你是怎样解答的? 汇报。

(1)270÷30-180÷30

=9-6

=3(名)

270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。(2)(270-180)÷30

=90÷30

=3(名)

270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。引导学生观察两个算式的不同点,以及运算顺序的不同。学生进行小结。

教师根据学生的小结进行板书。

三、巩固练习P7/做一做1、2 P11/做一做(完成书上的后,可以变化条件,如“买2副手套”等等。)教师在练习的过程中应抓住学生的关键语言进行知识的巩固。

四、作业 P8—9/5—9 板书设计:

四则运算

(二)星期天,爸爸妈妈带着玲玲去“冰雪

上午冰雕区有游人180位,下午有270位。天地”游玩,购买门票需要花多少钱?

如果每30位游人需要一名保洁员,下午要(1)24+24+24÷2(2)24×2+24÷2

比上午多派几名保洁员?

=24+24+12

=48+12

(1)270÷30-180÷30(2)(270-180)÷30

=48+12

=60(元)

=9-6

=90÷30

=60(元)

=3(名)

=3(名)

运算顺序:在没有括号的算式里,有乘、运算顺序:算式里有括号,要先算括号里 除法和加、减法,要先算乘、除法。

面的。课后小结: 第三课时

教学内容: P11/例5(强化小括号的作用)、归纳运算顺序 教学目标;

1.使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。2.在学生的头脑中强化小括号的作用。

3.在练习中总结归纳出四则混合运算的顺序。教学过程:

一、复习引入

回忆前两节课的学习内容,回顾学习过的四则运算顺序。

前面我们学习了几种不同的四则运算,你们还记得吗?谁能说说你在前面都学会了哪些四则运算顺序?

根据学生的回答进行板书。

二、新授 出示例5(1)42+6×(12-4)(2)42+6×12-4 学生在练习本上独立解答。(画出顺序线)两名学生板演。全班学生进行检验。

上面的两道题数字符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样? 这几天我们一直都在说“四则运算”,到底什么是四则运算呢? 学生针对问题发表自己的意见。

概括:加法、减法、乘法和除法统称四则运算。(板书)

谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下? 学生自由回答。

三、巩固练习P12/做一做1、2 P14/4 教师巡视纠正。

四、作业

P14—15/2、3、5—7 板书设计:

四则运算

(三)(1)42+6×(12-4)

(2)42+6×12-4

运算顺序:

=42+6×8

=42+72-4

(1)在没有括号的算式里,如果

=42+48

=114-4

只有加、减法或者只有乘、除法,都

=90

=110

要从左往右按顺序计算。

(2)在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

(3)算式里有括号的,要先算括

号里面的。加法、减法、乘法和除法统称四则运算。课后小结:第四课时

教学内容: P13/例6(0的运算)教学目的:

使学生掌握关于0的运算应该注意的问题。教学重、难点:

0不能做除数及原因。教学过程:

一、口算引入 快速口算 出示:

(1)100+0=(2)0+568=(3)0×78=(4)154-0=

(5)0÷23=(6)128-128=(7)0÷76=(8)235+0=(9)99-0=

(10)49-49=(11)0+319=(12)0×29=

二、新授

将上面的口算进行分类,请你们根据分类的结果说一说关于0的运算都有哪些。学生分类后进行概括总结关于0的运算。教师根据学生的回答进行板书。关于0的运算你还有什么想问的或想说的吗?学生提出0是否可以做除数。小组讨论:0能否做除数?全班辩论。各自讲明自己的理由。

教师小结:0不能做除数。如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。

三、小结

教师引导学生小结:关于0的运算应该注意的问题

四、作业

P15—16/8—13 板书设计:

关于“0”的运算

100+0=100 235+0=235

一个数加上0,还得原数。

0能否做除数? 0+319=319 0+568=568

0不能做除数。99-0=99 154-0=154

一个数减去0,还得这个数。

0×29=0 0×78=0

一个数乘0或0乘一个数,还得0。0÷76=0 0÷23=0

0除以一个非0的数,还得0。49-49=0 128-128=0

被减数等于减数,差是0。课后小结:

反思:学生通过学习,基本掌握四则运算中各种情形的运算规则,准确率也较高。

不足之处是计算时易漏掉进退位

位置与方向

第一课时

教学目标:

1、通过具体的活动,认识方向与距离对确定位置的作用。

2、能根据任意方向和距离确定物体的位置。

3、发展学生的空间观念。教学重点:

能根据任意方向和距离确定物体的位置。教学难点:

对任意角度具体方向的准确描述。教学过程: 设置情景

如果你是赛手,你将从大本营向什么方向行进?你是怎样确定方向的? 小组讨论:

运用以前学过的知识得到大致方向。

① 训练加方向标的意识:加个方向标有什么好处?

②突出以大本营为观测点:为什么把方向标画在大本营? 探究任意方向和距离确定物体的位置。质疑:

1、知道吐鲁番在大本营的东北方向就可以出发了吗?

2、如果这时就出发可能会发生什么情况?

小组讨论:沿什么方向走就能保证赛手更准确、更快的找到目的地。研究时,可以用上你手头的工具。吐鲁番在大本营东偏北30度 练一练:你说我摆,为小动物安家。(课前剪好小图片,课上动手操作。)

例:我把熊猫的家安在偏

,的方向上。

例:我把熊猫的家安在西偏北30度的方向上,熊猫摆

在哪?

讨论:为什么猴子的家在西偏南30度,而小兔家在南偏西30度的方向? 解决问题,寻找得出距离的方法。如果你的赛车每小时行进200千米,你要走几小时能到达考察地? 图上没有直接标距离,你有什么办法解决它呢? 仔细观察地图,你发现了什么?

小组试一试解决。吐鲁番在大本营东偏北30度 练习:

1、以雷达站为观测点,填一填。

护卫舰的位置是

度,距离雷达站

千米。巡洋舰的位置是

度,距离雷达站

千米。鱼雷艇的位置是

度,距离雷达站

千米。

2、以电视塔为观测点,按要求填空。

文化广场在电视塔西偏南45度的方向;体育场在电视塔东偏南30度的方向;博物馆在电视塔东偏南60度的方向;动物园在电视塔北偏西40度的方向。

课后延伸:

游乐场要新建两个游乐项目:一个在观览车西偏北40º方向上,约200米处新添一个“登月舱”,另一个“天外来客”在观览车南偏东20º方向上,约150米处。请你在平面图上标出这个新项目的位置。

第二课时

教学目标:

(1)能绘制平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。

(2)通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意 识和能力。

(3)通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。教学目的

一、复习引入合作绘图、练习巩固

目的是通过看图回答问题,复习、巩固有关图上方向、角度、距离等知识,为下面自己绘制平面图作准备。(1)停车场在广场的方向,距离大约是

米。小红家在广场的偏

方向,距离大约是

米。(2)地铁站在广场东偏南45度方向,距离广场100米。你能在图上标出地铁站的位置吗?并说一说是怎么想的。

1、出示学校的录相或图片

问:学校中有哪些建筑?现在有一些数据,能根据这些数据将这些建筑物在平面图上标出来吗?出示数据:教学楼在校门的正北方向150米处。图书馆在校门的北偏东35度方向150米处。体育馆在校门的西偏北40度方向200米处。活动角在校门的东偏北15度方向50米处。

2、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?

3、小组汇报完成平面图绘制的计划,教师进行梳理:(1)绘制平面图的方法: 先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说道,老师可以进行引导:你们打算怎样在图上表示出150米,200米和50米?从而帮助学生确定比例尺,和图上距离。

(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。

4、小组活动,绘制平面图。

5、展示各组绘制的平面图,集体进行评议。

(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定? 教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。(2)比较各个平面图,为什么有的图大,有的图小?

小结:1厘米表示的大小不同,图的大小也不同。练习:

1、完成书上习题21页3、4题并订正。

二、在纸上设计小区,并说明各个建建筑的位置。

老师提供给学生一些建筑物的图片:如医院、学校、商店、银行、邮局、药店等

第三课时

教学目标:

1通过教学使学生以不同的地点为观测点判断方向。

2在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。

3“做一做”呈现了两名学生合作判断对方所在方向的活动情境,使学生进一步体会位置关系的相对性。

教学重点:为什么在描述两个城市位置关系的时候会有两种方式。教学难点:使学生进一步认识到位置关系的相对性。教学内容:第22页例3和做一做 教学过程:

一、创设情境引入新课

1、观察书上插图

小组讨论(1)用自己已有的方位知识说一说这些城市的位置关系。(2)讨论后每组选出一名同学在班内汇报。

2、汇报讨论结果

(1)首先找到北京和上海在地图上的位置。(2)确定以谁为观测点。

(3)用语言描述北京和上海的具体位置。

(以北京为观测点,上海在北京的南偏东约30度的方向上。以上海为观测点,北京在上海的北偏西30度的方向上。)3答疑解难

(针对学生的具体情况进行解答,能在组内解决的在小组内解决,努内解决不了的老师解答。)二 复习巩固

1、完成做一做

(1)组织学生做游戏(可两人一组也可四人一组)

(2)让每个学生充分参与到活动中来,人人开口说一说。三 复习反馈

1、完成练习第1、2两题

2、当堂汇报

(北京在哈尔滨的南偏西的方向上,哈尔滨在北京的备偏东的方向上。)(学校在我家的南偏西的方向上,距离约是900米。)(小刚)(你家在学校的北偏西的方向上。)(小芳)

反思:学生通过学习,基本掌握四大正方向,八大方向的辨别和描述。准确率也较高。但对正偏某一方向类的问题,个别学生搞错主方向。

第四课时

已有基础:

1、能够根据方向和距离两个条件确定物体的位置。

2、能够根据方向和距离,在图上绘出物体的位置。

3、已能体会到位置关系的相对性。教学目标:

1、能用语言描述简单的路线图。

2、在合作交流中能绘制简单的路线图。

3、体会路线图在实际生活中的广泛应用。教学重点:体会定向运动行走过程中的观测点在不断变化。

教学难点:根据观测点的变化来重新确定方向标观察物体的位置。

教学准备:每个(小组)学生一个越野路线图,每人一张白纸(绘图用)教学过程:

一、山地越野:描述行走路线小组讨论:

1、作为越野队员我们将怎样确定越野路线?

2、我们是怎样确定方向和路程的?

3.描述行走路线为什么要到达一个目标就重新画出方向标?

描述行走路线一个越野车队,四个赛段的时间分别是15分钟、5分钟、35分钟、5分钟,他们走完全程的平均速度是多少?10千米 描述行走路线讨论:

为什么第一赛段的路程与第三赛段路程长短差不多,时间却相差一倍多?车坏了、路是上 坡、路上障碍物多、路上休息了一些时间„„

二、沙漠驱车越野:绘制简单路线图 根据所给信息画出越野路线

1、在起点的东偏北40°方向距离350千米的地方是点1

2、在点1的西偏北25°方向距离200千米的地方是点2

3、终点在点2的西偏南20 °方向距离它300千米的地方

(1)点1的西北方是

,终点在起点的方向,点2在起点的方向。(2)说出具体路线:

从起点出发,先向

度方向走

km到点1,再向

度方向走

km到点2,最后向

偏度方向走

km到终点。

开放题:公园游览

第一课时

教学内容:

P28/例1(加法交换律)P29/例2(加法结合律)教学目标:

1.引导学生探究和理解加法交换律、结合律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学过程:

一、主题图引入

观察主题图,根据条件提出问题

(1)李叔叔今天一共骑了多少千米?

(2)李叔叔三天一共骑了多少千米?

等等。

引导学生观察主题图,教师根据学生提出的问题板书。

二、新授

练习本上用自己的方法列出综合算式,解答黑板上问题。教师巡视,找出课堂上需要的答案,找学生板演。学生观察第一组算式,发现特点。

引导学生观察第一组算式,总结出:40+56=56+40 试着再举出几个这样的例子。根据学生的举例,进行板书。通过这几组算式,你们发现了什么? 学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。教师根据学生的小结,板书。

你能用自己喜欢的方式表示出加法交换律吗?板书:a+b=b+a 学生用多种形式表示。符号表示:△+☆=☆+△ 引导学生观察第二组算式,总结出:(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。

学生继续观察几组算式。出示(69+172)+28 69+(172+28)155+(145+207)(155+145)+207 通过上面的几组算式,你们发现了什么?学生总结观察到的规律。

教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。学生用自己喜欢的方式表示加法结合律。符号表示:(△+☆)+○=△+(☆+○)教师板书:(a+b)+c=a+(b+c)学生根据这两个运算定律,举一些生活中的例子。

三、巩固练习

P28/做一做

P31/

4、1

四、小结:学生小结本节课学习的加法的运算定律。今天这节课你们都有什么收获? 你能把这些运用于以后的学习中吗?

五、作业:P31/3 板书设计:

加法的运算定律

(1)李叔叔今天一共骑了多少千米?

(2)李叔叔三天一共骑了多少千米? 40+56=96(千米)

56+40=96(千米)

88+104+96

104+96+88

=192+96

=200+88

=288(千米)

=288(千米)

40+56=56+40

(88+104)+96=88+(104+96)

┆(学生举例)

(69+172)+28=69+(172+28)两个加数交换位置,和不变。

155+(145+207)=(155+145)+207 这叫做加法交换律。

先把前两个数相加,或者先把后两个数相加,和不变。这叫做加法结合律。

a+b=b+a

(a+b)+c=a+(b+c)课后小结:

第二课时

教学内容:P30/例3(加法运算定律的运用)教学目标:

1.能运用运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学过程:

一、复习巩固

回忆上节课学习的关于加法的运算定律。(1)加法交换律(2)加法结合律

根据学生的汇报板书。

二、新授

出示:例5下面是李叔叔后四天的行程计划。第四天 城市A→B

A→B 115千米 第五天 城市B→C

B→C 132千米 第六天 城市C→D

C→D 118千米 第七天 城市D→E

D→E 85千米

根据上面的条件,你们能提出什么问题?教师根据学生的提问,有选择性地将问题板书。请你们在练习本上列出综合算式解答黑板上的问题。汇报自己的答案,并说明理由。重点引导学生对最后一个问题(按照计划,李叔叔在后四天还要骑多少千米?)进行汇报。学生可能对括号问题有异议,教师可以正确引导,加法中为了更清楚地体现运算顺序,所以要加小括号。既用到了加法交换律,也用到了加法结合律。这道题我们运用了加法中的什么运算定律?通常在简便计算中,加法交换律和加法结合律是同时使用的。

三、巩固练习

P30/做一做

四、小结 学生汇报学习的内容,以及自己的收获?这节课你有什么收获?

五、作业:P32/5—7

板书设计:

加法运算定律的应用

按照计划,李叔叔在后四天还要骑多少千米? 115+132+118+85

=115+85+132+118

←加法交换律

=(115+85)+(132+118)←加法结合律

=200+250

=450(千米)课后小结:

反思:学生通过学习,基本掌握加法运算定律所描述的内容。准确率也较高。

第三课时

教学内容:

加法运算定律应用的练习课 教学目标:

1.能熟练运用运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学过程:

一、基本练习1.口答:

(1)根据运算定律在下面的()里填上适当的数。46+()=75+()

24+19=()+()()+38=()+59

a+57=()+()

要求学生说出根据什么运算定律填数。

(2)根据每组第一个算式直接说出第二个算式的结果。

632+85=717

85+632=()

304+215=519 215+304=()(3)下面各式那些符合加法交换律。

140+250=260+130

260+450=460+250 20+70+30=70+30+20

a+400=400+a 通过上面的几道题,你们能小结一下我们都复习了什么内容吗?(根据学生的回答板书)学生小结。

练习本独立完成:

(1)一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米。北京到济南的铁路场多少千米?

(2)玉门县要修一条公路,已经修了400千米,还有260千米没有修,这条公路有多少千米? 求:(1)画出线段图。(2)列式计算。

比较两题在应用运算定律方面有什么不同。在比较重视学生明确,第1题只应用了加法结合律,而第2题先用加法交换律把75和480交换位置,再应用加法结合律把325和75相加才能使计算简便。师生共同订正。(简单说明线段图应该怎样画,做简要规范。)(3)根据运算定律在下面的□里填上适当的数。369+258+147=369+(□+147)(23+47)+56=23+(□+□)654+(97+a)=(654+□)+□

(4)下面哪些等式符合加法结合律? a+(20+9)=(a+20)+9 15+(7+b)=(20+2)+b(10+20)+30+40=10+(20+30)+40(5)用简便方法计算:

91+89+11

78+46+154 168+250+32

85+41+15+59 480+325+75

325+480+75

二、小结

学生谈收获。课后小结:

第四课时

教学内容:

P34/例1(乘法交换律)

例2(乘法结合律)教学目标:

1.引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学过程:

一、主题图引入

观察主题图,根据条件提出问题。(1)负责挖坑、种树的一共有多少人?(2)一共要浇多少桶水?

学生在练习本上独立解决问题。

引导学生观察主题图。根据学生提出的问题,适当板书。

二、新授

引导学生对解决的问题进行汇报。

(1)4×25=100(人)

25×4=100(人)

两个算式有什么特点?你还能举出其他这样的例子吗?教师根据学生的举例进行板书。你们能给乘法的这种规律起个名字吗?

板书:交换两个因数的位置,积不变。这叫做乘法交换律。能试着用字母表示吗?学生汇报字母表示:a×b=b×a 我们在原来的学习中用过乘法交换律吗?在验算乘法时,可以用交换因数的位置,再算一遍的方法进行验算,就是用了乘法交换律。

根据前面的加法结合律的方法,你们能试着自己学习乘法中的另一个规律吗? 教师巡视,适时指导。(2)(25×5)×2 25×(5×2)

=125×2

=10×25

=250(桶)

=250(桶)小组合作学习。

①这组算式发现了什么? ②举出几个这样的例子。

③用语言表述规律,并起名字。④字母表示。小组汇报。

教师根据学生的汇报,进行板书整理。

三、巩固练习P35/做一做1、2

四、小结

学生小结本节课的学习内容。教师引导学生回忆整节课的学习要点。完善板书。

五、作业:P37/2—4 板书设计:

乘法交换律和乘法结合律

(1)负责挖坑、种树的一共有多少人?

(2)一共要浇多少桶水?

25×4=100(人)

4×25=100(人)

(25×5)×2 25×(5×2)

25×4=4×25

=125×2

=10×25

┆(学生举例)

=250(桶)

=250(桶)(25×5)×2=25×(5×2)

┆(学生举例)交换两个因数的位置,积不变。

先乘前两个数,或者先乘后两个数,这叫做乘法交换律。

积不变。这叫做乘法结合律。

a×b=b×a

(a×b)×c=a×(b×c)课后小结:

第五课时: 教学内容:

乘法交换律和乘法结合律练习课 教学目标:

1.能运用运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学过程:

一、基本练习

(1)口算: 50×2=100

50×20=1000 25×4=100 25×8=200

25×12=300

25×40=1000 125×8=1000

125×16=200 125×24=3000 125×80=10000

通过刚才的口算,你们很快就算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?板书:5×2 25×4 125×8(2)在□里填上合适的数。30×6×7=30×(□×□)125×8×40=(□×□)×□(3)计算:43×25×4

25×43×4 比较两道题,在运用乘法运算定律时有什么不同?在讨论的基础上,启发学生总结出:第1题只应用乘法结合律把后两个数相乘,就可以使计算简便;第2题要先用乘法交换律把4放在前面,使25与4相乘,或把25放在43的后面,使25与4相乘,然后再用乘法结合律,使计算简便。

小结:用乘法结合律进行简便计算有两种情况:一种是单独运用乘法结合律使计算简便,一种是两个运算定律结合使用,使计算简便。关键要掌握运算定律的内容,根据题目的特点,灵活运用运算定律。

引导学生在对比中加以区分。

(4)师生比赛,看谁直接说出结果速度快。25×42×4

68×125×8 4×39×25(5)对比练习:4×25+16×25

(25+15)×4

46×25 4×25×16×25

(25×15)×4

(40+6)×25 49×49+49×51

(68+32)×5 49×99+49

68+32×5 学生小组分工后独立完成,再进行小组内交流。汇报。

二、小结:学生谈收获。课后小结:

第六课时

教学内容: P36/例3(乘法分配律)

教学目的:1.引导学生探究和理解乘法分配律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学重点:乘法分配律的意义和应用。教学难点:乘法分配律的反应用。教学过程:

一、铺垫孕埋伏

思考问题:在学习乘法的运算定律时,我们观察了一幅主题图,有的同学还提出了一个问题:一共有多少名同学参加了这次植树活动?

二、新授

小组讨论,尝试用不同的方法解决。教师引导学生用多种方法解答。学生汇报自己的解法。引导学生说明不同算法的理由。(1)(4+2)×25

=6×25

=150(人)

4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。(2)4×25+2×25

=100+50

=150(人)

4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。小组合作:

(1)两组算式有什么相同点?(2)两组算式有什么不同点?(3)两组算式有什么联系? 汇报。

教师要根据学生的汇报,灵活地进行引导,总结出要点。你还能举出像这样的几组算式吗?学生举例。根据学生举例板书。到底我们举的例子是不是符合这样的规律呢?请学生验证。请学生用语言表述出发现的规律。

板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。(a+b)×c=a×c+b×c a×(b+c)=a×b+a×c 你有什么好方法帮助我们大家记住乘法分配律?简记为:和与一个数相乘=积相加

三、巩固练习

P36/做一做

P38/5 在练习小结中,帮助学生记忆乘法分配律。

四、小结

学生汇报自己的收获。教师引导小结,相应完善板书。板书设计: 乘法分配律

一共有多少名同学参加了这次植树活动?

(1)(4+2)×25

(2)4×25+2×25

=6×25

=100+50

=150(人)

=150(人)

(4+2)×25=4×25+2×25

┆(学生举例)(a+b)×c=a×c+b×c a×(b+c)=a×b+a×c 两个数的和与一个数相乘,可以先把它们与这个 数分别相乘,再相加。这叫做乘法分配律。课后小结:

第七课时

教学内容:乘法分配律的应用

教学目的:1.引导学生能运用乘法分配律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学过程:

一、复习准备

出示:1.口算:73+27

138×100

100-64

64×1

8×9×125

(4+40)×25 2.在□里填上适当的数。302=300+□

(300+2)×43=300×□+2×□

2003=2000+□

(2000+3)×14=2000×□+□×□

二、新授

我们已经学习了乘法分配律,今天继续研究怎样应用乘法分配律使计算简便。

出示102×(),学生任意填上一个两位数。老师迅速说出它的得数,而不用笔算。出示:计算102×43小组讨论完成。学生可能出现:(1)(100+2)×43

(2)102×(40+3)

在对比的基础上,教师引导学生观察题目的特点,以及怎样应用乘法分配律,从而使学生 明确:两个数相乘,把其中一个比较接近整

十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。小练:(1)在□里填上适当的数。3001×84=□×84+□×84 92×203=92×(200+□)

=92×200+92×□(2)计算102×24 出示:9×37+9×63 学生在练习本上独立完成。

(1)9×37+9×63

(2)9×37+9×63

=333+567

=9×(37+63)

=900

=9×100

=900 找出不同的方法,进行板演。引导学生对比两种方法,重点理解、说明第二种方法。小结:这类题目的结构形式的特点是算式的运算符号一般是×、+、×的形式,也就是两个积的和。在两个乘法算式中,有一个相同的因数,也就是两个数的和要乘那个数。另外两个不同的因数,一般是两个能凑成整

十、整百、整千的数。小练:(80+8)×25

35×37+65×37

32×(200+3)

38×29+38 讨论:这个题目符合乘法分配律的结构形式吗?你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?订正时,说明怎样运用运算定律简算的。

引导学生小结:我们运用乘法分配律间算时,一定要认真审题,观察算式的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算。

三、巩固练习

1.师生对出题。我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式,但这两个算式合起来要能应用乘法分配律简算。2.根据乘法分配律把相等的算式用“=”连接起来。

23×12+23×88

(35+45)×12

(11×25)×4

25×(4+40)讨论:

2、3题为什么不相等?要使等号两边的算式相等,符合乘法分配律的形式,应该怎么改? 3.P38/5

四、小结:谈收获。

五、作业:P38/6—8 板书设计:

乘法分配律的应用

计算102×43

9×37+9×63

9×37+9×63

38×29+38

102×43

=333+567

=9×(37+63)

=38×(29+1)

=(100+2)×43

=900

=9×100

=38×40

=100×43+2×43

=900

=1520

=4300+86

=4386 课后小结:

第八课时

教学内容:乘法运算定律的复习

教学目的:1.引导学生能运用乘法运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学过程:

一、知识点的复习:回忆《乘法的运算定律》这一小节的学习内容。教师引导回忆,并相应板书。

二、联系实际复习

1.学生汇报课前收集的有关乘法的运算定律的相应知识。

2.学生汇报课前自己根据乘法运算定律自编的题目或搜集的题目。教师把符合要求的题目贴上黑板。学生根据前面的知识点的复习,进行题目的独立解答。

要求:选择自己喜欢的方法解答。教师巡视,加以必要的指导。有必要的题目可以让学生练习画线段图。

小组内交流。全班汇报。

三、小结:学生谈收获 课后小结:

第九课时

教学内容: P39/例1(减法性质)P43/例3(除法性质)

教学目标:1.知道从一个数里连续减去或除以两个数,可以改为减去两个数的和或除以两个数的积。

2.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。3.培养学生探索、研究数学的意识与能力。

教学重点: 引导学生探索和理解一个数连续减去或除以两个数,可以减去两个数的和或除以两个数的积。

教学难点:学生自己探索一个数连续除以两个数,可以改为除以两个数的积。

教学过程:

一、情境引入: 购物:一个电脑桌497元,一种电脑椅203元,另一种电脑椅235元。带1035元买一张桌子和一把椅子,还剩多少钱?学生自己选择条件,独立解答。汇报:(1)1035-235-497

(2)1035-(497+235)(3)1035-497-203(4)1035-(497+203)

1035-497-235

1035-203-497

二、新授

板书:1035-235-497

1035-(497+235)

1035-497-203

1035-(497+203)观察两组算式,你有什么发现?你还能举出这样的几组算式吗?

教师板书。学生发现规律,并相应进行语言描述,初步总结减法性质。观察这几组算式,你有什么发现?

板书:从一个数里连续减去两个数,可以减去两个数的和。谁能试着用字母表示?板书:a-b-c=a-(b+c)小练:(1)一本书一共有234页,我昨天看到第66页,今天又看了34页,还剩多少页没有看?

请学生用自己喜欢的方法解答。汇报时对比不同的解法,找出最优解法。在其他的运算中是否也有这样的规律呢? a+b+c= a+(b-c)a×b×c= a×(b÷c)a÷b÷c=a÷(b×c)究竟哪个是对的呢?请小组合作验证。小组合作验证;可以采用代入数字的方法,也可以采用举实例的方法等等。小组选择自己认为可能的规律进行验证。最后验证出第三个是正确的。小练:(1)填空:436-236-150=436-(□+□)480-(268+132)=480〇268〇132 1000-159-□=1000〇(□+441)□-(217+443)=895-□-□ 16÷2÷4=16÷(□〇□)

210÷(7×6)=210〇(7〇6)□÷(25×7)=350〇(□〇□)

(2)判断:638-(438+57=638-438+57 901-109-91= 901-(109+91)113-36-64= 133-(36+64)

3456-(481+519)= 3456-481-519 35÷14 = 350÷2÷7 3000÷4÷25= 3000÷(4+25)

三、巩固练习:P39/做一做1、2 简算:(1)1245-(245+673)(2)1275-(164+36)(3)480-82-18

(4)673-84-71-45(5)81÷3÷3

(6)210÷(7×6)

四、小结 : 学生谈收获,以及本节课的重点和做题中需要注意的问题。

五、作业:P41/2—

4、P47/6 板书设计:

连加、连除算式中的简算

(1)1035-235-497

(1)1035-497-203

a+b+c= a+(b-c)1035-497-235

1035-203-497

a×b×c= a×(b÷c)(2)1035-(497+235)

(2)1035-(497+203)

1035-235-497 =1035-(497+235)

1035-497-203 =1035-(497+203)

┆(学生举例)

从一个数里连续减去两个数,从一个数里连续除以两个数,可以减去两个数的和。

可以除以这两个数的积。a-b-c=a-(b+c)

a÷b÷c=a÷(b×c)课后小结:

第十课时:

教学内容: P40/例2(综合运用加碱计算的实践问题)教学目标: 培养学生灵活解决实际问题的能力。教学过程:

一、图片引入:观察主题图,思考问题的解决方法。出示主题图。

二、新授

1.观察图

(一)中的条件问题。

引导学生观察图

(一),小组合作讨论问题

(一)的解决方法,比一比哪个小组的方法多?小组讨论。(教材提示了两种算法。一种是把每三本书的价钱相加。采用这种方法,学生遇到的困难是,四本书取三本共有几种情况?这是一个组合问题,回答这个问题,如果直接从四本书中每次取三本,要做到不重不漏,思考难度较大。如果反过来思考,四本取三本,也就是从四本书中每次去掉一本,就很容易得出共有四种情况。这种反过来思考的间接思路,用于计算三本书总价,就是教材提示的第二种算法。)全班交流。教师根据学生的汇报整理板书。2.观察图

(二)的条件问题。小组讨论。汇报。

三、小结 : 学生谈本节课的收获。教师完善板书。

四、作业:P42/5—7

课后小结: 第十一课时:

教学内容: P44/例4(两个数相乘的乘法中的简便计算)

教学目标:1.使学生理解和掌握把一个数乘两位数,改成连续乘两个一位数的简便算法。

2.培养学生分析、判断、推理的能力,增强使用简便算法的择优意识。教学重点:简便算法的算理。

教学难点:把一个两位数改成两个合适的一位数相乘的方法。教学过程:

一、复习准备

口算12×30

18×20

24×40

15×40 15=()×()

24=()×()

30=()×()

36=()×()

二、新授

出示

例4主题图

什么是“一打”? 引导学生观察主题图。“一打”表示12个。观察主题图,独立解决题目中的问题。找三个代表性的解题方法进行板演。板演:(1)25×12=300(元)

(2)25×12

(3)12×25

=25×(3×4)

=12×(100÷4)

=(25×4)×3

=12×100÷4

=100×3

=1200÷4

=300(元)

=300(元)第1种直接计算。第2种把其中的一个两位数的因数改成了两个一位数相乘的形式。引导学生观察三个算式及解决方法。

你喜欢哪种方法?在以后的解题过程中,你能应用自己喜欢的方法解决问题吗?第三种把其中的一个因数改成了两个数相除的形式,然后变成乘除混合运算,可以任意交换位置进行简便计算。

根据主题图,你还能提出什么问题?教师选择性地板书。小组合作分工完成黑板上的题目。小组内交流。全班交流。教师要注意学生在简算过程中,是否正确地采用了简便计算的方法。

三、小结

学生谈收获,小结重点及应该注意的问题。教师完善板书。

四、巩固练习

P47/

4、5 板书设计:

乘法中的简便计算

12×25=300(元)

12×25

12×25

=(3×4)×25

=12×(100÷4)

=3×(4×25)

=12×100÷4

=3×100

=1200÷4

=300(元)

=300(元)

课后小结:

第十二课时:

教学内容:P45/例5(乘加运算中的简便计算)

教学目标:1.进一步熟练学生进行简便计算的方法。

2.能熟练运用简便方法解决实际中的问题。教学过程:

一、主题图引入

观察主题图。引导学生观察主题图。

二、新授

请你们根据图中的条件与问题,进行小组讨论,看看这个问题如何解决。巡视指导。汇报:

(1)31×2+30×2+26

(2)7×21+1

=(31+30)×2+26

=147+1

=61×2+26

=148(天)

=122+26

=148(天)

在按月计算的过程中,运用了乘法分配律。

按周计算的思路不难理解,但计数一共有多少周比较容易出错。可以让同桌互相指着月历边点、边数,也可以请能正确计数的同学介绍自己是怎样数的。

根据主题图的数据你们还能提出什么问题? 学生根据条件问题提问。

教师根据学生的提问板书。

学生选择自己感兴趣的问题进行独立解答。

解答后小组互相交流。说说自己完成的是哪个问题,怎样解决的?有没有用到运算定律,怎样运用的?

三、小结

学生谈收获及应该注意的问题。

谈谈在今天的学习后,你对运算定律的应用又有了什么样的认识和感受。

四、巩固练习

P46—47/1、3、7、8

五、作业:准备实践活动《营养午餐》 板书设计:

乘、加运算中的简便计算

(1)31×2+30×2+26

(2)7×21+1

=(31+30)×2+26

=147+1

=61×2+26

=148(天)

=122+26

=148(天)课后小结:

四单元

小数的意义和性质 小数的产生和意义 教学目的:(一)知识方面

1.使学生了解小数的产生。2.使学生理解小数的意义。3.掌握小数的计算单位及单位间的进率。(二)能力方面

1.培养学生的动手操作能力及观察力。2.培养学生的抽象概括能力。(三)德育方面

渗透事物之间普遍联系的观点、实践第一的观点。教学重点:理解和抽象小数的意义。教学难点:抽象小数的意义。教具学具准备:投影片、直尺。教学步骤

一、铺垫孕伏 填空(投影出示)(1)0.1是()分之一。

0.7里有()个0.1。(2)10个0.1是()。

10个0.01是()。(3)写成小数是()。

写成小数是()。(4)1米=()分米=()厘米=()毫米。

二、探究新知 1.导入新课:

同学们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。(板书:小数的产生和意义)2.教学小数的产生

(1)引导学生动手量课桌的宽度,发现了什么?(2)请同学们口答下面的题:(用整数表示结果)1000÷10=

100÷10=

10÷10=

1÷10=(3)总结:在测量和计算时,往往得不到整数的结果,这时也常用小数表示。由于日常生活和生产的需要,从而产生了小数。3.教学小数的意义(1)填写

①投影出示:在图中填出分数和小数。

学生填完结果并订正

②启发学生:把1米平均分成10份,每份是多少分米?3份呢?

③引导学生口述:1分米是10分之1米,还可写成0.1米?(板书:

④总结:分母是10的分数可以写成几位小数?(板书:一位小数)(2)出示米尺教具

这是把1米平均分成了多少份?根据以上学习你能知道什么?学生以小组方式讨论,然后找同学回答,教师板书:

[学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥了学生的积极主动性,使学生知道分母是100的分数可以写成两位小数](3)问:把1米平均分成1000份,每份长是多少?

学生在尺上找出1毫米,而后出示(投影)1厘米的放大图

引导学生从图中找出1毫米,并说明理由。启发学生明确:1毫米

提问:分母是1000的分数可以写成几位小数?(板书:三位小数)

(4)抽象、概括小数的意义

①把1米看成一个整体,如把一个整体平均分成10份、100份、1000份„„这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几、百分之几、千分之几这样的分数表示。

这样的分数写成小数时,可以仿照整数的写法,写在整数个位的右面,用圆点隔开。③什么叫小数?引导学生讨论。④师生共同概括:

分母是10、100、1000„„的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几„„的数叫做小数。(投影出示)。小数是分数的另一种表现形式。⑤完成“做一做”。

(5)教学小数的计数单位。

①学习阅读教科书,学习小数的计算单位。

②出示0.457,每个数位上的数各表示几个几分之一?

三、巩固发展 1.填表格:

2.判断:

(1)0.40里面有4个0.01()(2)35克=0.35千克()3.把小数改写成分数

0.9

0.09

0.0359

四、全课小结:这节课你有哪些收获?

五、独立作业:

六、板书设计

小数的读写法 教学内容

教科书52~53页小数的读写法,完成做一做题目和练习九的第6~7题。教学目的

使学生会读、写小数,并进一步理解小数的意义。教学重点:使学生会读、写小数。教具准备: 幻灯、幻灯片 教学过程:

一、复习1、0.2是()位小数,表示()分之(); 0.15是()位小数,表示()分之(); 0.008是()位小数,表示()分之()。2、0.4的计数单位是(),它有()个这样的计数单位; 0.07的计数单位是(),它有()个这样的计数单位; 0.138的计数单位是(),它有()个这样的计数单位。

二、新课

1、教学小数的数位顺序表。

前面我们已经认识了小数,谁能举出一些小数的例子?(0.2

0.05

0.005

0.01„„)这些小数有什么共同特点?(小数点左边的数都是0)

在日常生活中你还见过其他的小数吗?谁能举出一些例子?(1.5

40.6

3.134

6.8„„)这些小数的小数点的左边还是0吗? 观察一下:小数可以分为几部分? 是不是所有的小数都比1小?

谁还记得整数的数位顺序?每个数位的计数单位是什么?相邻的计数单位间的进率是多少?

学生边回答边在黑板上板书整数数位顺序表。

接着提问:0.2表示什么?(表示两个十分之一)十分之一是它的计数单位;0.05表示什么?(表示百分之五,有五个百分之一)百分之一是它的计数单位。0.006表示千分之六,有六个千分之一,千分之一是它的计数单位。

十分之

一、百分之

一、千分之

一、万分之一等都是小数的计数单位。这些小数的计数单位那个最大?

多少个十分之一是整数1? 多少个百分之一是十分之一? 多少个千分之一是百分之一?

这些小数每相邻两个计数单位间的进率是多少?(10)

这和整数相邻两个计数单位间的进率是一样的,因此,一个小数的小数部分可以用小数点与整数部分隔开,排在整数部分的右边,向整数一样计数。10个十分之一是整数1,整数个位的右边应该是什么位?

多少个百分之一是十分之一?十分位右边应该是哪一位?百分位右边应该是哪一位呢?再往下还有万份位、十万份位等,所以我们在数位表上用„„

十分位的计数单位是多少?百分位、千分位、万分位的计数单位分别是多少? 指出345.679整数部分中的每一位分别是什么位?

再指出小数部分的十分位、百分位、千分位上分别是多少?

2、教学小数的读法

出示最大古钱币的相关数据:高:0.58米、厚:3.5厘米、重:41.47千克 问:你会读出古钱币的有关数据吗? 谁能总结一下小数的读法?

强调:读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。完成做一做:读出下面小数

3、教学小数的写法

(1)例3:据国内外专家实验研究预测:到2100年,与1900年相比,全球平均气温将上升一点四至五点八摄氏度,平均海平面将上升零点零九至零点八八米。你会写出上面这段话中的小数吗?(2)做一做:写出下面的小数。

零点零七

五点零六

十点零零二 三百点七一

零点零一四

十五点五零三

三、巩固练习

1、填空

0.9里面有()个0.1 0.07里面有()个0.01 4个()是0.04

2、小数点右边第二位是()位,第四位是()位,第一位是(),第三位是()。

3、说出24.375 每个小数位上的数各是几个几分之一?

4、读出下面各数

(1)南江长江大桥全长6.772千米。(2)土星绕太阳转一周需要29.46年。

(3)1千瓦时的电量可以使电车行驶0.84千米。

小数的性质 教材简析

小数的性质是小数四则计算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添上一个或几个“0”,或者把整数改写成小数的形式。教学时,要通过比较、辨析、抽象、概括等一系列的思维活动,帮助学生理解和掌握小数的性质。教学目的:

1利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。2让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。教学重点:掌握小数性质的含义 教学难点:小数性质归纳的过程 教学过程

一、创设情境,引导探索

1师:课前老师让同学们去商场、超市观察商品的标价签,并记录1-2种商品的价格,请谁来汇报一下?

生:2.00元,师:是多少钱呢?生:2元。生:3.50元。师:是多少钱? 生:3元5角

师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店可爱多标价是2.5元,右边一家则是2.50元,那你们去买的时候会选择哪一家呢?为什么?

师:为什么2.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。2找等量关系。

教师首先板书三个“1”,让学生判断是相等的,接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,板书写成:1、10、100,提问:这三个数相等吗?(不相等)你能想办法使它们相等吗?学生在教师的启发下,回答可以添上长度单位“米、分米、厘米”或“分米、厘米、毫米”就相等了。板书写成:1分米=10厘米=100毫米。3思考探索。

(1)你能把它们改用“米”作单位表示吗?

(2)改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)板书如下:

(3)按箭头所指的方向观察三个小数有什么变化? 生:小数的末尾(后面)添零,它的大小不变。生:小数的末尾(后面)去掉零,它的大小不变。师:由此,你发现了什么规律?

生:小数的末尾添零或去掉零,小数的大小不变。

二、探索新知

验证猜想 为了验证我们的这个结论,我们再来做一个实验。1出示做一做:比较0.30与0.3的大小

师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

2师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的办法越多越好,老师提供两个大小一样的正方形,一张数位顺序表)

3生1:在两个大小一样的正方形里涂色比较。

A左图把1个正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示? B右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示? C从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)

4师:0.30与0.3相等,证明刚才这个结论是对的。

5生2:从数位顺序表上可以看出,在小数的末尾添零或是去零,其余的数所在数位不变,所以小数的大小也就不变。

师:小数中间的零能不能去掉?能不能在小数中间添零?

生:不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。师:那整数有这个性质吗?(要强调出小数与整数的区别)

问:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)6提醒注意:性质中的“末尾”跟一般说的“后面”是不同的。7判断练习。

下面的数中,那些“0”可以去掉? 3.9

0.300

1.8000

500 5.780

0.0040

102.020

60.06

三、联系生活

灵活运用

1.教师结合板书内容讲解性质的运用。

(1)根据小数的性质,当遇到小数末尾有“0”的时侯,例如,0.30,一般可以去掉末尾的“0”,把小数化简。(0.30=0.3)化简下面各小数:

0.40

1.850

2.900

0.50600 0.090

10.830

12.000

0.070(2)师:有时根据需要,可以在小数的末尾添上0;(例如:0.3→0.30)

还可以在整数的个位右下角点上小数点,再添上 0,把整数写成小数的形式。比如:我们在商场里看到的2元=2.00元,2.5元=2.50元

出示:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数,怎样改写? 让学生同桌两人议论后答出。

提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上“0”。

四、多层练习,巩固深化

1学校小卖部进了一批冷饮,你能帮忙设计一下价格标签吗? 盐水棒冰每支5角 随便 每支1元5角 可爱多每支2元5角 2选择题。(在正确答案下面的圈内涂上黑色)化简102.020的结果是()

12.212.02

102.0200

102.02 ○

○ 要求学生回答:化简的依据是什么? 3.判断题。(打“√”,错的打“×”)(1)0.080=0.8

()(2)4.01=4.100

()(3)6角=0.60元

()(4)30=30.00

()

(5)小数点后面添上“0”或去掉“0”,小数的大小不变。

()让学生按顺序回答,并说出判断的依据是

人教三年级数学下全册教案

第一篇:人教三年级数学下全册教案 义务教育课程标准实教科书 三年级数学教案 第一课时 下册 教学内容...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部