仪器分析教案

第一篇:仪器分析教案
仪器分析教案:
遵义师范学院 敖克厚
一、仪器分析要求
仪器分析实验是仪器分析课程的重要组成部分,通过实验可使学生更好的理解和掌握理论教学中所介绍的各种分析仪器的原理,正确掌握各种常用仪器的结构及基本操作技能,针对不同的分析对象,会正确选择适当的仪器分析方法,包括确定分析仪器﹑试剂﹑分析条件﹑分析步骤﹑获得实验数据及正确进行数据处理等。通过实验可培养学生综合应用各种仪器分析方法解决相应环境监测对象的能力。
二、实验须知
1、实验者应准备一本编有页码的实验记录本,不能使用单页纸或活页本。
2、写预习报告: 实验前,应充分预习实验的方法和原理、实验步骤、仪器使用等内容。在实验记录本上,拟订好实验的操作步骤,预先记录实验必要的常数及计算公式。还应事先划好记录数据的表格,以便有条理且不遗漏地记录数据。
3、实验应紧张有序地进行。实验过程中应认真观察思考,如实地记录数据和实验现象,忠实地、完整地记录实验过程、测量数据及有关资料。记录的原始数据不得随意涂改。如果需废弃某些记录的数据,则可在其上划一道线。
4、还要始终保持实验场所的清洁、整齐和安静。每个学生都应遵守实验室规则,养成良好的实验习惯。药品、试剂、电、水、气体等都应节约使用,并重视实验室安全。实验室中的仪器不能随意摆弄,以防损坏或发生其他事故。
5、实验完成后,应及时写出实验报告。报告应包括:
①实验题目、完成日期、姓名、合作者
②实验目的、简要原理、所用仪器、试剂及主要实验步骤
③实验数据及计算结果,实验的讨论
④原始实验数据记录 ⑤解答实验思考题
报告中所列的实验数据和结论,应组织得有条理,合乎逻辑,还应表达得简明正确,并附上应有的图表。
二、实验数据及分析结果的表达
1.列表法
列表法表达数据,具有直观、简明的特点。实验的原始数据一般均以此方法记录。
列表需标明表名。表名应简明,但又要完整地表达表中数据的含义。此外,还应说明获得数据的有关条件。表格的纵列一般为实验号,而横列为测量因素。记录数据应符合有效数字的规定,并使数字的小数点对齐,便于数据的比较分析。一般使用三线表法记录数据。
一、列表法
列表法是以表格形式表示数据。其优点是列入的数据是原始数据,可以清晰地看出数据的过程,亦便于日后对计算结果进行检查和复核;可以同时列出多个参数的设置,便于同 时考察多个变量之间的关系。当数据很多时,列表占用篇幅过大,显得累赘。用列表法表示数据时,需要注意规范化:
(1)选择适合的表格形式,在现在的科技文献中,通常采用三线制表格,而不采用网格式表。
(2)简明准确地标注表名,表名标注于表的上方。当表名不足以充分说明表中数据含义时,可以在表的下方加标注。
(3)表的第一行为表头,表头要清楚标明表内数据的名称和单位。名称尽量用符号表示。同一列数据单位相同时,将单位标注于该列数据的表头,各数据后不再加写单位。单位的写法采用斜线制。
(4)在列数据时,特别是数据很多时,每隔一定量的数据留一空行。上下数据的相应位数要对齐,各数据要按照一定的顺序排列。
2.图解法
图解法可以使测量数据间的关系表达得更为直观。在许多测量仪器中使用记录仪记录获得测量图形,利用图形可以直接地或间接求的分析结果。
⑴利用变量间的定量关系图形求得未知物含量
定量分析中的标准曲线,就是将自变量浓度为横坐标,应变量即各测定方法相应的物理量为纵坐标,绘制标准曲线。对于欲求的未知物浓度,可以由它测得的相应物理量值从标准曲线上查得。
⑵通过曲线外推法求值
分析化学测量中常用间接方法求测量值。如对未知试样可以通过连续加入标准溶液,测得相应方法的物理量变化,用外推作图法求得结果。
3求函数的极值或转折点
○ 3 实验常需要确定变量之间的极大、极小、转折等,通过图形表达后,可迅速求得其值。
如光谱吸收曲线中,峰值波长及它的摩尔吸光系数的求得;滴定分析中,通过滴定曲线上的转折点求得滴定终点等。
⑷图解微分法和图解积分法
如利用图解微分法来确定电位滴定的终点,在气相色谱法中,利用图解积分法求色谱峰面积。
3.作图方法
作图的方法和技术将影响图解结果,现将标绘时的要点介绍如下:
⑴标绘工具及图纸
绘图工具主要有铅笔(1H),透明直尺及曲尺,圆规等。
一般情况下,均选用直角坐标纸。如果一个坐标是测量值的对数,则可用单对数坐标纸,如直接电位法中,电位与浓度的曲线绘制。如果两个坐标都是测量值的对数,则要用双对数坐标纸。
⑵坐标标度的选择
①以自变量为横坐标,应变量为纵坐标。
②选择合适的坐标标绘变量,使测量结果尽可能绘得一条直线,便于绘制和应用。
③绘出的直线或近乎直线的曲线,应使它安置在接近坐标的45角。
④标的标度。第一,应使测量值在坐标上的位置方便易读。如坐标轴上各线间距表示数量1、2、4或5是适宜的,但应避免使用3、6、7或9等数字。第二,应能表达全部有效数字,图上读出各物理量的精密度应与测量的精密度一致。第三,坐标的起始点不一定是零。可用低于最低测量值的某一整数作起点,高于最高测量值的某一整数作终点,以充分利用坐标纸,但各个测量值的坐标精密度不超过1-2个最小分度。
⑶图纸的标绘
①各坐标轴应标明该轴的变量名称及单位,并在纵轴的 左面及横轴的下面,每隔一定距离标明变量的数值,即分度值,但不要将实验数据写在轴旁。标记分度值的有效数字一般应与测量数据相同。
②标绘数据时,可用符号代表点,如用“⊙”,其中心点代表测得的数据值,圆点的大小应与测量的精密度相当。若在一张图纸上绘几条曲线,则每组数据应选用不同的符号代表,如+、×、等,但在一张图纸上不宜标绘过多。当两个变量的精密度相差较大时,代表点可用矩形符号或变相矩形符号。
③会线时,如果两个量成线性关系,按点的分布情况作一直线,所绘的直线应与各点接近,但不必通过所有点,因为直线表示代表点的平均变动情况。在绘制曲线时,也应按此原则。如果毫无理由的将个别点远离曲线,这样所绘的曲线是不正确的,一般讲,曲线上不应有突然弯曲和不连续的地方,但如果这种情况确实超出了测量值的误差范围,则不能忽视。如光谱吸收曲线上的突然弯曲显示了峰肩的存在。
曲线的具体绘法,先用淡铅笔手绘一条曲线,再用曲线板依曲线逐段凑合描光滑,并注意各段描线的衔接,使整条曲线连续。⑷图名和说明
绘好图后应注上图名,测量的主要条件,最后标写姓名、日期。
4.分析结果的数值表示
报告分析结果时,必须给出多次分析结果的平均值以及它的精密度。注意数值所表示的准确度与测量工具、分析 方法的精密度相一致。报告的数据应遵守有效数字规则。
重复测量试样,平均值应报告出有效数字的可疑数。例:三次重复测量结果为11.32、11.35、11.32,内中11.3为确定数,第四位为可疑数,其平均值应报告11.33。若三次结果为11.42、11.35、11.22,则小数点后一位就为可疑数,其平均值应报11.3。
当测量值遵守正态分布规律时,其平均值为最可信赖值和最佳值,它的精密度优于个别测量值,故在计算不少于四个测量值的平均值时,平均值的有效数字位数可增加一位。
一项测定完成后,仅报告平均值是不够的,还应报告这一平均值的偏差。在多数场合下,偏差值只取一位有效数字。只有在多次测量时,取两位有效数字,且最多只能取两位。然后用置信区间来表达平均值的可靠性更可取。
二、仪器分析实验中的数据处理知识:
1、曲线拟合
在仪器分析中,绝大多数情况下都是相对测量,需用校正曲线进行定量建立校正曲线,就是基于使偏差平方和达到极小的最小二乘法原理,回归分析: 因变量:仪器响应值,自变量:被测定样品的已知值。
原理:最小二乘法,对若干个对应的数据(x1,y1),(x2,y2),(xn,yn),用函数进行拟合。从作图的角度说,就是根据平面上一组离散点,选择适当的连续曲线近似地拟合这一组离散点,以尽可能完善到表示仪器响应值和被测定量的之间的关系。这种基于最小二乘法原理研究因变量与自变量之间的相关关系的方法,称为回归分析。
用回归分析建立仪器分析校正曲线,因变量是仪器响应值,是具有概率分布的随机变量,自变量是被测定量(浓度),为无概率分布的固定变量。所建立的校正曲线,描述了因变量与自变量之间的相关关系,并可根据各自变量的取值对因变量进行预报和控制。
bn xiyixiyi
nxi2xi2a ybx相关系数
用最小二乘法原理拟合回归方程,其斜率和截距分别为:所拟合的回归方程及建立的曲线在统计上是否有意义,可用相关系数进行检验。相关系数r是表征变量之间相关 7 程度的一个参数,若γ大于相关系数表中的临界值r0.05,f,表示所建立的回归方程和回归线是有意义的;反之,γ若小于r0.05,f,则表示所建立的回归方程和回归线没有意义。r的绝对值在0至1的范围内变动,r值越大,表示变量之间相关的程度越密切。当y随x增大而增大,称为y与x为正相关,为正值;当y随x增大而减少,称y与x为负相关,r为负值。
表1
相关系数表临界值r0.05,f
rnxyxyxxyy nyynxxxxyyiiiiii22ii2i2i2i2i 8
第二篇:仪器分析教案
第三节 高效液相色谱法的主要类型及其分离原理
【教学目标】
1.掌握液-液分配色谱法及化学键合相色谱法的分离原理,分配系数、固定相的类型和特点 2.熟悉高效液相色谱法的主要类型 3.熟悉高效液相色谱法的主要类型
4.了解各类高效液相色谱法的特点及应用 【教学重点】
液-液分配色谱法及化学键合相色谱法;分离原理;分配系数 【教学难点】
分配系数;分配系数与组分流出顺序的关系 【复习题】
1.气相色谱法有哪几种类型?各类气相色谱法的固定相与流动相的类型是什么? 2.各类气相色谱法的分离原理是什么? 3.分配系数的定义是什么?意义是什么?
【讲授新课】
与气相色谱一样,液相色谱分离系统也由两相——固定相和流动相组成。液相色谱的固定相可以是固定液、吸附剂、化学键合固定相(或在惰性载体表面涂上一层液膜)、离子交换树脂或多孔性凝胶;流动相是各种溶剂。被分离混合物由流动相液体推动进入色谱柱。根据各组分在固定相及流动相中的吸附能力、分配系数、离子交换作用或分子尺寸大小的差异进行分离。色谱分离的实质是样品分子(以下称溶质)与溶剂(即流动相或洗脱液)以及固定相分子间的作用,作用力的大小,决定色谱过程的保留行为。
根据其分离原理不同,高效液相色谱法可分为几种类型:
一. 液-液分配色谱法及化学键合相色谱法
(一)液-液分配色谱法
1.固定相:将液体固定液涂渍在担体上作为固定相。
流动相:液体。
且要求,流动相液体与固定相液体互不相溶。
2.分离原理:溶解——溶解分配平衡过程(组分溶解在固定相中—组分溶解在流动相中),类似于液液萃取机理。
溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。
3.分配系数:
当样品中的被测定组分在固定相和流动相中达到动态平衡时,可以用分配系数来描述这个分配平衡过程:
其中,(1)分离的顺序决定于分配系数的大小:
固定相对某组分的溶解力大于溶剂对某组分的溶解力,K↑,后流出色谱柱 固定相对某组分的溶解力小于溶剂对某组分的溶解力,K↓,先流出色谱柱
(2)某色谱条件下,两组分分配系数差值为零,则代表两组分在该色谱条件下不能分离。4.分类:
正相液-液色谱法:固定相极性>流动相极性,极性较小组分先出峰,极性较大组分后出峰 适于分离极性较强的物质
反相液-液色谱法:固定相极性<流动相极性
极性较大组分先出峰,极性较小组分后出峰 适于分离非极性至中等极性的物质
(二)化学键合相色谱法:
(1)固定相:将固定液通过化学反应共价键合到担体(硅胶)表面作为固定相。
流动相:液体。
(2)分离原理:同液-液分配色谱法。(3)分配系数:同液-液分配色谱法。(4)分类:同液-液分配色谱法。
(三)液-液分配色谱法与化学键合相色谱法的对比
液-液分配色谱法 化学键合相色谱法 与担体结合方式 涂渍 共价键合
柱效对比 较低 较高
固定液是否流失 是 否
能否进行梯度洗脱 否 能
另外,化学键合固定相表面固定液一般多为单分子层,因此无液坑,液层薄,传质速度快;且有载样量大,化学性能稳定,重现性高,色谱柱寿命长等优点。目前已经逐渐取代了传统的液液分配色谱,成为液相色谱法中使用最广泛的方法。
二.液-固吸附色谱法
1.固定相:液固吸附色谱法的固定相是固体吸附剂。吸附剂是一些多孔的固体颗粒物质,在它的表面通常存在吸附中心点,可以有效地从气体或液体中吸附其中某些成分。流动相:液体
2.分离原理:吸附——吸附竞争平衡过程(组分吸附在固定相上—流动相吸附在固定相上)
流动相中的溶质分子X(流动相)被流动相S带入色谱柱后,在随流动相流动的过程中,发生如下交换反应:
其作用机制是被分离组分(溶质分子X)与流动相(溶剂分子S)争夺吸附剂表面吸附活性中心的结果(竞争吸附)。在这个过程中,交换能力较强的溶质分子会竞争得到更多的吸附中心点,从而在色谱柱中移动较慢,从而达到分离的目的。3.分配系数:
其中,(1)分离的顺序决定于分配系数的大小:
吸附剂对某组分的吸附力越强,K↑,后流出色谱柱 吸附剂对某组分的吸附力越弱,K↓,先流出色谱柱
(2)某色谱条件下,两组分分配系数差值为零,则代表两组分在该色谱条件下不能分离。
4.应用:
液固色谱法适用于分离分子量中等,能溶于有机溶剂的非离子性化合物,此外,液固色谱法对于分离具有不同官能团的结构相似的化合物、异构体有较高的选择性。
三.离子交换色谱法
1.固定相:是一种带电荷的官能团的固定基质,称为离子交换剂。为保证交换剂的电中性,基质上还存在带相反电荷的离子,称为反离子。
目前常用的三大类离子交换剂基质:合成树脂、纤维素、硅胶。流动相:具有一定pH和盐浓度的缓冲溶液
2.分离原理:吸附——吸附竞争平衡过程(反离子吸附在固定相上—组分离子吸附在固定相上)
在离子交换过程中,流动相中存在的被分析离子(M+)与树脂上吸附的反离子(Y-)之间发生竞争吸附,可用下列平衡表示:
阳离子交换: 阴离子交换:
被分离样品中不同离子对交换剂具有不同的亲和力,在发生竞争吸附时,不同的样品离子交换反离子的能力也不同。对交换剂亲和力较强的样品离子,交换反离子的能力较强,从而在色谱柱中迁移速度较慢,从而达到分离的目的。3.分配系数:
以阴离子交换平衡过程为例,分配系数:
其中,(1)分离的顺序决定于分配系数的大小:
溶质中某离子与离子交换剂的相互作用越强,K↑,后流出色谱柱 溶质中某离子与离子交换剂的相互作用越弱,K↓,先流出色谱柱
(2)某色谱条件下,两组分分配系数差值为零,则代表两组分在该色谱条件下不能分离。
4.应用:
离子交换色谱法特别适用于分离离子化合物、有机酸和有机碱等能电力的化合物和能与离子基团相互作用的化合物。它不仅广泛地应用于有机物质,而且广泛地应用于生物物质的分离,如氨基酸、核酸、蛋白质等生物分子,还能用于维生素的混合物、食品防腐剂、血清等的分离。5.分类:
阳离子交换色谱和阴离子交换色谱
【小结】
1. 固定相:
液-液分配色谱法 将液体固定液涂渍在担体上作为固定相
化学键合相色谱法 将固定液通过化学反应共价键合到担体(硅胶)表面作为固定相 液-固吸附色谱法 吸附剂 离子交换色谱法 离子交换剂 2.分离原理
液-液分配色谱法 溶解——溶解分配平衡过程(组分溶解在固定相中—组分溶解在流动相中)化学键合相色谱法 溶解——溶解分配平衡过程(组分溶解在固定相中—组分溶解在流动相中)液-固吸附色谱法 吸附——吸附竞争平衡过程(组分吸附在固定相上—流动相吸附在固定相上)离子交换色谱法 吸附——吸附竞争平衡过程(反离子吸附在固定相上—组分离子吸附在固定相上)3.各种色谱法的分配系数表示方法虽各不相同,但分配系数与组分流出顺序的关系均可表述为,组分K↑,后流出色谱柱;组分K↓,先流出色谱柱。
【作业】
课后习题 2、6、9。
第九节 高效液相色谱法在食品检测中的应用
【教学目标】
1.了解高效液相色谱法在食品检测中的具体应用实例
2.能够通过实例系统地了解之前所学关于高效液相色谱法的具体内容 3.了解食品高效液相色谱法前处理知识 【教学重点】
外标法定量的运用 【教学难点】
不同定量方法的运用 【复习题】
1.液相色谱法的主要定量方法包括哪几种?
【讲授新课】
5.动物源食品呋喃唑酮残留量的测定
呋喃唑酮(痢特灵)是一种抗菌效果非常好的广谱抗生素药物,曾被广泛应用于家禽、家畜、水产品中的疾病预防和治疗。近年的研究表明,呋喃唑酮及其代谢物具有致基因突变和致癌性。美国1993年禁止呋喃唑酮作为兽药,欧盟将其列为违禁药品,我国农业部第235号公告中也规定动物性食品中呋喃唑酮检出限为不得检出。
(一)原理:反相色谱法
(二)色谱条件:
固定相:C18柱
流动相:乙腈—磷酸溶液 检测器:Uv-vis检测器 检测波长:367nm 流速:1.0ml/min 进样量:20ul
(三)测定方法: 1.试样前处理:
固体试料破碎→混合→初分离→浓缩→再分离→过滤→供试样液
2.测定方法(外标法):
(1)标准对照品溶液的配制与测定:精密称取呋喃唑酮标准对照品适量,配制成一定浓度的溶液Cs。在上述色谱条件下得到色谱流出曲线,呋喃唑酮的保留时间在4.5min附近,得到呋喃唑酮峰的峰面积As。
(2)样品溶液测定:试样溶液在上述色谱条件下分离得到试样的色谱流出曲线,得到试样中呋喃唑酮的峰面积Ax。
(3)外标法计算:利用下式即可计算的出样品中的呋喃唑酮含量
二.高效液相色谱测定保健食品中的黄芪甲苷
黄芪是多年生草本豆科植物,药用历史悠久、广泛。皂苷是黄芪中的主要有效成分之一,而黄芪皂苷以黄芪甲苷为主。黄芪甲苷具有增强机体免疫力、抗氧化、促进细胞生长,抑制内毒素等作用。所以在一些保健食品中,黄芪甲苷作为功能性添加剂成分有添加。例如,蜂胶黄芪软胶囊、虫草鸡精口服液。
(一)原理:反相色谱法
(二)色谱条件:
固定相:C18柱 流动相:乙腈—水
检测器:二极管阵列检测器 检测波长:227nm 流速0.8ml/min 进样量:10ul
(三)测定方法(外标法峰面积标准曲线法): 1.试样前处理:
虫草鸡精口服液试样→浓缩→定容→过柱(大孔吸附树脂)→浓缩→过滤→供试样液 2.测定方法:
(1)标准对照品溶液的配制与测定:精密称取黄芪甲苷标准对照品适量,配制为浓度从低到高的一系列溶液C1……C5(5.0,10.0,20.0,40.0,50.0μg/mL)。在上述色谱条件下依次得到相应色谱流出曲线,并得到峰面积A1……A5。
(2)标准曲线的绘制:以峰面积A对浓度进行线性回归,得线性回归方程,即为标准曲线。
(3)样品溶液测定:在标准曲线的线性范围内,加载供试样液,得到样品色谱流出曲线,测量其中黄芪甲苷对应峰的峰面积。
将样品黄芪甲苷峰的峰面积带入线性回归方程,利用标准曲线法即可算出样品中的黄芪甲苷含量。
三.高效液相色谱法同时进行测定食品中安赛蜜、糖精、苯甲酸、山梨酸和咖啡因
食品添加剂若使用不当,添加过量,就会对人体产生毒副作用。
(一)原理:反相色谱法
(二)色谱条件:
固定相:C18柱
流动相:甲醇—柠檬酸铵 检测器:Uv-vis检测器 检测波长215nm 流速1.0ml/min 进样量20μL 柱温40℃
(三)测定方法: 1.试样前处理:
(1)乳状液体样品(果奶、冰淇淋等):
试样→沉淀蛋白质→过滤、脱气→供试样液
(2)澄清液体样品(汽水、可乐等):
试样→脱气→稀释→过滤→供试样液
(3)固状样品(肉制品、酱脆菜等):
试样→捣碎→加入溶剂→沉淀蛋白质→过滤、脱气→供试样液
2.测定方法(外标法峰高标准曲线法):
(1)标准溶液配制:使用流动相配制安赛蜜、糖精钠、苯甲酸、山梨酸、咖啡因标准溶液(1mg/mL),将各标准液按照安赛蜜、糖精钠、苯甲酸、山梨酸、咖啡因比例依次为5.0、4.0、5.0、5.0、5.0μg/mL混合,得到混合标准溶液。将混合标准溶液用水稀释成6个浓度C1……C6
(2)确定成分峰位置:首先用各自的标准溶液稀释,在色谱条件下进行分析,定性确定每个峰对应的成分。
(3)标准曲线:在上述色谱条件下,6个浓度的混合标准溶液分别得到相应色谱流出曲线,并得到峰高h1……h6。以峰高h对含量进行线性回归,得各种标准物质的线性回归方程,即为标准曲线。
(4)样品溶液测定:在标准曲线的线性范围内,加载供试样液,得到每种样品的色谱流出曲线,测量其中添加剂对应峰的峰高。
将样品添加剂相关峰的峰高带入线性回归方程,利用标准曲线法即可算出样品中各种添加剂的含量。
四.反相高效液相色谱法测定巧克力中香兰素
香兰素是重要的食用香料之一,是食用调香剂,具有香荚兰豆香气及浓郁的奶香,是食品添加剂行业中不可缺少的重要原料,广泛运用在各种需要增加奶香气息的调香食品中,香兰素是国家允许添加的食品添加剂,按国标添加不会对身体造成伤害。但大剂量食用可导致头痛、恶心、呕吐、呼吸困难,甚至损伤肝肾等。
(一)原理:反相色谱法
(二)色谱条件:
固定相:C18柱 流动相:甲醇—水 检测器:Uv-vis检测器 检测波长:280nm 流速:1.0ml/min 进样量:10μL 柱温:35℃
(三)测定方法: 1.试样前处理:
巧克力样品→加水加温溶解→定容→离心取上层清液→过滤→供试样液
2.测定方法:
外标法峰面积标准曲线法定量
参见实验二.高效液相色谱测定保健食品中的黄芪甲苷中的标准曲线测定方法
【小结】
1.样品预处理:根据样品状态不同采用不同的预处理方法,再利用相似相溶粗提取要测的成分。2.分析实例中用的是反相色谱,其固定相为十八烷基硅烷键合硅胶,极性小于流动相(乙腈-水;乙腈-磷酸盐;甲醇-水;甲醇-柠檬酸)。且分析的样品都是弱极性、中等极性的样品。3.含量测定:外标法(标准曲线法、峰面积法、峰高法)
【作业】
课后题 10。
第三篇:仪器分析电子教案
《仪器分析》课程教案
第一章 引 言
一、课程简介
仪器分析法是以测量物质的物理性质为基础的分析方法。这类方法通常需要使用较特殊的仪器,故得名―仪器分析‖。随着科学技术的发展,分析化学在方法和实验技术方面都发生了深刻的变化,特别是新的仪器分析方法不断出现,且其应用日益广泛,从而使仪器分析在分析化学中所占的比重不断增长,并成为化学工作者所必需掌握的基础知识和基本技能。
二、仪器分析方法的分类
三、仪器分析的特点及发展趋势
优点是:1.操作简便而快速,对于含量很低(如质量分数为10-8或10-9数量级)的组分,则更具独特之处。2.被测组分的浓度变化或物理性质变化能转变成某种电学参数(如电阻、电导、电位、电容﹑电流等),故易于实现自动化和连接电子计算机。因此,仪器分析具有简便、快速、灵敏、易于实现自动化等特点。对于结构分析,仪器分析法 也是极为重要和必不可少的工具。
生产的发展和科学的进步,不仅对分析化学在提高准确度 ﹑ 灵敏度和分析速度等方面提出更高的要求,而且还不断提出更多的新课题。一个重要的方面是要求分析化学能提供更多﹑更复杂的信息。
现代科学技术发展的特点是学科之间的相互交叉﹑渗透,各种新技术的引人﹑应用等,促进了学科的发展,使之不断开拓新领域﹑新方法。如电感耦合等离子体发射光谱﹑傅立叶变换红外光谱﹑傅立叶变换核磁共振波谱﹑激光拉曼光谱﹑激光光声光谱等。另外试样的复杂性﹑测量难度﹑要
求信息量及响应速度在不断提高,这就需要将几种方法结合起来,组成连用分析技术,可以取长补短,起到方法间的协同作用,从而提高方法的灵敏度﹑准确度及对复杂混合物的分辨能力,同时还可获得两种手段各自单独使用时所不具备的某些功能,因而连用分析技术以成为当前仪器分析方法的主要方向之一。计算机技术对仪器分析的发展影响极大。在分析工作者的指令控制下,仪器自动处于优化的操作条件完成整个分析过程,进行数据采集﹑处理﹑计算等,直至动态CRT显示和最终曲线报表。现在由于计算机性能价格比的大幅度提高,已开始采用功能完善的pc计算机,随着硬件和软件的平行发展,分析仪器将更为智能化﹑高效﹑多用途。
仪器分析方法的局限性: 除了方法本身的一些原因外,还有一个共同点,就是他们的准确度不够高,相对误差通常在百分之几左右,有的甚至更差。这样的准确度对低含量组分的分析已能完全满足要求,但对常量组分的分析,就不能达到高的准确度此外,在进行仪器分析之前,时常要用化学方法对试样进行预处理;同时,需要以标准物进行校准,而很多标准物需要用化学分析方法来标定。因此化学方法和仪器方法是相辅相成的。在使用时应根据具体情况,取长补短,互相配合。
四、学习内容及时间安排
色谱分析法:气相色谱法(8学时)﹑高效夜相色谱法(4学时);电化学分析法:电位分析法(4学时)﹑极谱分析法(4学时)﹑库仑分析法(4学时);光学分析法:原子发射光谱法(6学时)﹑原子吸收光谱法(6学时)﹑紫外吸收光谱法(4学时)﹑红外吸收光谱法(4学时);核磁共振波谱法(4学时);质谱分析法(4学时)。
第二章 气相色谱分析
基本要点:
1.了解色谱法的分类;
2.掌握色谱分析的基本原理;
3.理解柱效率的物理意义及其计算方法;
4.理解速率理论方程对色谱分离的指导意义。
5.掌握分离度的计算及影响分离度的重要色谱参数
第一节 气相色谱分析概述
色谱法是一种分离技术。它以其具有高分离效能、高检测性能、分析时间快速而成为现代仪器分析方法中应用最广泛的一种方法。它的分离原理是,使混合物中各组分在两相间进行分配,其中一相是不动的,称为固定相,另一相是携带混合物流过此固定相的流体,称为流动相。
一、色谱法分类:
按流动相的物态,色谱法可分为气相色谱法(流动相为气体)和液相色谱法(流动相为液体);再按固定相的物态,又可分为气固色谱法(固定相为固体吸附剂)、气液色谱法(固定相为涂在固体上或毛细管壁上的液体)、液固色谱法和液液色谱法等。
按固定相使用的形式,可分为柱色谱法(固定相装在色谱柱中)、纸色谱法(滤纸为固定相)和薄层色谱法(将吸附剂粉末制成薄层作固定相)等。
按分离过程的机制,可分为吸附色谱法(利用吸附剂表面对不同组分的物理吸附性能的差异进行分离)、分配色谱法(利用不同组分在两相中有不同的分配来进行分离)、离子交换色谱法(利用离子交换原理)和排阻色谱法(利用多孔性物质对不同大小分子的排阻作用)等。
二、气相色谱分析
气相色谱法是利用气体作为流动相的一种色谱法。在此法中,载气(是不与被测物作用,用来载送试样的惰性气体,如氢、氮等)载着欲分离的试样通过色谱柱中的固定相,使试样中各组分分离,然后分别检测。其简单流程如图 2-1 所示。
三、气相色谱仪组成
Ⅰ.载气系统;Ⅱ.进样系统;Ⅲ.色谱柱和柱箱;Ⅳ.检测系统;Ⅴ.记录系统。
四、色谱术语
基线——当色谱柱后没有组分进入检测器时,在实验操作条件下,反映检测器系统噪声随时间变化的线称为基线,稳定的基线是一条直线。如图 2-2 中所示的直线
基线漂移—— 指基线随时间定向的缓慢变化。
基线噪声——指由各种因素所引起的基线起伏。
保留值——表示试样中各组分在色谱柱中的滞留时间的数值。通常用时间或用将组分带出色谱柱所需载气的体积来表示。在一定的固定相和操作条件下,任何一种物质都有一确定的保留值,这样就可用作定性参数。
死时间 tM ——指不被固定相吸附或溶解的气体(如空气、甲烷)从进样开始到柱后出现浓度最大
值时所需的时间。显然,死时间正比于色谱柱的空隙体积。
保留时间tR——指被测组分从进样开始到柱后出现浓度最大值时所需的时间。
调整保留时间 tR' ——指扣除死时间后的保留时间,即 tR'=tR-tM
死体积 VM ——指色谱柱在填充后固定相颗粒间所留的空间、色谱仪中管路和连接头间的空间以及检测器的空间的总和。VM =tMFO
保留体积VR——指从进样开始到柱后被测组分出现浓度最大值时所通过的载气体积,即VR =tRFO
调整保留体积VR' ——指扣除死体积后的保留体积,即
VR' =tR'.FO 或 VR' =VR-VM
同样,V'R 与载气流速无关。死体积反映了柱和仪器系统的几何特性,它与被测物的性质无关,故保留体积值中扣除死体积后将更合理地反映被测组分的保留特性。
相对保留值r21——指某组分 2 的调整保留值与另一组分 1 的调整保留值之比:
得越好,r21=1时,两组分不能被分离。
区域宽度——色谱峰区域宽度是色谱流出曲线中一个重要的参数。从色谱分离角度着眼,希望区域宽度越窄越好。通常度量色谱峰区域宽度有三种方法:
(1)标准偏差σ 即0.607倍峰高处色谱峰宽度的一半。
(2)半峰宽度Y 1/2又称半宽度或区域宽度,即峰高为一半处的宽度,它与标准偏差的关系为:
相对r21亦可用来表示固定相(色谱柱)的选择性。值越大,相邻两组分的t'R相差越大,分离(3)峰底宽度Y自色谱峰两侧的转折点所作切线在基线上的截距,如图 2-2中的 IJ所示。它与标准偏差的关系为:Y=4σ保留值r21——指某组分2的调整保留值与另一组分1的调整保留值之比:
第二节 气相色谱分析理论基础
一、气相色谱分析的基本原理
1.气-固色谱分析:固定相是一种具有多孔及较大表面积的吸附剂颗粒。试样由载气携带进入柱子时,立即被吸附剂所吸附。载气不断流过吸附剂时,吸附着的被测组分又被洗脱下来。这种洗脱下来的现象称为脱附。脱附的组分随着载气继续前进时,又可被前面的吸附剂所吸附。随着载气的流动,被测组分在吸附剂表面进行反复的物理吸附、脱附过程。由于被测物质中各个组分的性质不同,它们在吸附剂上的吸附能力就不一样,较难被吸附的组分就容易被脱附,较快地移向前面。容易被吸附的组分就不易被脱附,向前移动得慢些。经过一定时间,即通过一定量的载气后,试样中的各个组分就彼此分离而先后流出色谱柱。
2.气-液色谱分析:固定相是在化学惰性的固体微粒(此固体是用来支持固定液的,称为担体)表面,涂上一层高沸点有机化合物的液膜。这种高沸点有机化合物称为固定液。在气—液色谱柱内,被测物质中各组分的分离是基于各组分在固定液中溶解度的不同。当载气携带被测物质进入色谱柱,和固定液接触时,气相中的被测组分就溶解到固定液中去。载气连续进入色谱柱,溶解在固定液中的被测组分会从固定液中挥发到气相中去。随着载气的流动,挥发到气相中的被测组分分子又会溶解在前面的固定液中。这样反复多次溶解、挥发、再溶解、再挥发。由于各组分在固定液中溶解能力不同。溶解度大的组分就较难挥发,停留在柱中的时间长些,往前移动得就慢些。而溶解度小的组分,往前移动得快些,停留在柱中的时间就短些。经过一定时间后,各组分就彼此分离。
3.分配系数:在一定温度下组分在两相之间分配达到平衡时的浓度比称为分配系数K。
K=(组分在固定相中的浓度)/(组分在流动相中的浓度)=CS/CM
一定温度下,各物质在两相之间的分配系数是不同的。气相色谱分析的分离原理是基于不同物质在两相间具有不同的分配系数,两相作相对运动时,试样中的各组分就在两相中进行反复多次的分配,使原来分配系数只有微小差异的各组分产生很大的分离效果,从而各组分彼此分离开来。
4.分配比(容量因子):以κ表示,是指在一定温度、压力下,在两相间达到分配平衡时,组分在两相中的质量比:k=ms/mM
5.分配比 к 与分配系数 K 的关系:
由式可见:
(1)分配系数是组分在两相中浓度之比,分配比则是组分在两相中分配总量之比。它们都与组分及固定相的热力学性质有关,并随柱温、柱压的变化而变化。
(2)分配系数只决定于组分和两相性质,与两相体积无关。分配比不仅决定于组分和两相性质,且与相比有关,亦即组分的分配比随固定相的量而改变。
(3)对于一给定色谱体系(分配体系),组分的分离最终决定于组分在每相中的相对量,而不是相对浓度,因此分配比是衡量色谱柱对组分保留能力的参数。
(4)组分在柱内的线速度US将小于u,则两速度之比称为滞留因子 RS :
RS=uS/u
二、色谱分离基本理论
1.塔板理论
塔板理论假定:
(1)在一小段间隔内,气相组成与液相组成很快达到分配平衡。用塔板高度 H 表示;
(2)载气进入色谱柱,不是连续的而是脉动式的,每次进气为一个板体积;
(3)试样开始时都因在第0号塔板上,且试样沿柱方向的扩散可略而不计;
(4)分配系数在各塔板上是常数。
为简单起见,设色谱柱由5 块塔板 [n=5],n为柱子的理论塔板数,并以r表示塔板编号,r等于0,1,2,----,n-1,某组分的分配比k=1,则根据上述假定,在色谱分离过程中该组分的分布可计算如下:
开始时,若有单位质量,即 m=1(1mg 或1ug)的该组分加到第0号塔板上,分配达平衡后,由于K =1,即ms = mm , 故 ms = mm = 0.5。
当一个板体积(1ΔV)的载气以脉动形式进入0号板时,就将气相中含 有 部分组分的载气顶到1号板上,此时0号板液相中ms部分组分及1号板气相中的 mm 部分组分,将各自在两相间重新分配,故0号板上所含组分总量为0.5,其中气液两相各为0.25;而1号板上所含 总量同样为0.5,气液两相亦各为0.25。
以后每当一个新的板体积载气以脉动式进入色谱柱时,上述过程就重复一次,如下所示:
由流出曲线图可以看出,组分从具有5块塔板的柱中冲洗出来的最大浓度是在n为8或9时。流出曲线呈峰形但不对称。这是由于柱子的塔板数太少的缘故。当n>50时,就可以得到对称的峰形曲线。在气相色谱中,n 值是很大的,约为103~106,因而这时的流出曲线可趋近于正态分布曲线。
流出曲线上的浓度 C 与时间 t 的关系可表示:
由塔板理论可导出 n 与色谱峰半峰宽度或峰底宽度的关系:
而H=L/n
由式上式可见,色谱峰越窄,塔板数n越多,理论塔板高度H就越小,此时柱效能越高,因而 n或H可作为描述柱效能的一个指标。
由于死时间 tM(或死体积VM)的存在,理论塔板n,理论塔板高度H并不能真实反映色谱分离的好坏。因此提出了将tM除外的有效塔板数n有效和有效塔板高度H有效作为柱效能指标。其计算式为:
有效塔板数和有效塔板高度消除了死时间的影响,因而能较为真实地反映柱效能的好坏。色谱柱的理论塔板数越大,表示组分在色谱柱中达到分配平衡的次数越多,固定相的作用越显著,因而对分离越有利。但还不能预言并确定各组分是否有被分离的可能,因为分离的可能性决定于试样混合物在固定相中分配系数的差别,而不是决定于分配次数的多少,因此不应把n有效看作有无实现分离可能的依据,而只能把它看作是在一定条件下柱分离能力发挥的程度的标志。
2.速率理论
1956年荷兰学者范弟姆特等提出了色谱过程的动力学理论,他们吸收了塔板理念的概念,并把影响塔板高度的动力学因素结合进去,导出了塔板高度H与载气线速度u的关系:H=A+B/U+Cu
其中A称为涡流扩散项,B为分子扩散项,C为传质阻力项。
下面分别讨论各项的意义:
(1)涡流扩散项A气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似―涡流‖的流动,因而引起色谱的扩张。由于A=2λdp,表明A与填充物的平均颗粒直径dp的大小和填充的不均匀性λ有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。
(2)分子扩散项B/u由于试样组分被载气带入色谱柱后,是以―塞子‖的形式存在于柱的很小一段空间中,在―塞子‖的前后(纵向)存在着浓差而形成浓度梯度,因此使运动着的分子产生纵向扩散。而 B=2rDg,r是因载体填充在柱内而引起气体扩散路径弯曲的因数(弯曲因子),Dg为组分在气相中的扩散系数。分子扩散项与Dg的大小成正比,而Dg与组分及载气的性质有关:相对分子质量大的组分,其Dg小,反比于载气密度的平方根或载气相对分子质量的平方根,所以采用相对分子质量较大的载气(如氮气),可使B项降低,Dg随柱温增高而增加,但反比于柱压。弯曲因子r 与填充物有关的因素。
(3)传质项系数CuC包括气相传质阻力系数Cg和液相传质阻力系数C1两项。
所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。对于填充柱:
液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发生质量交换,达到分配平衡,然后以返回气液界面 的传质过程。这个过程也需要一定时间,在此时间,组分的其它分子仍随载气不断地向柱口运动,这也造成峰形的扩张。液相传质阻力系数C1为:
对于填充柱,气相传质项数值小,可以忽略。将常数项的关系式代入简化式得:
由上述讨论可见,范弟姆特方程式对于分离条件的选择具有指导意义。它可以说明,填充均匀程度、担体粒度、载气种类、载气流速、柱温、固定相液膜厚度等对柱效、峰扩张的影响。
第三节 色谱分离条件的选择
一、分离度
两个组分怎样才算达到完全分离?首先是两组分的色谱峰之间的距离必须相差足够大,若两峰间仅有一定距离,而每一个峰却很宽,致使彼此重叠,则两组分仍无法完全分离;第二是峰必须窄。只有同时满足这两个条件时,两组分才能完全分离。
为判断相邻两组分在色谱柱中的分离情况,可用分离度 R 作为色谱柱的分离效能指标。其定义为 相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值:
R值越大,就意味着相邻两组分分离得越好。因此,分离度是柱效能、选择性影响因素的总和,故可用其作为色谱柱的总分离效能指标。
从理论上可以证明,若峰形对称且满足于正态分布,则当R=1时,分离程度可达98% ;当R=1.5时,分离程度可达99.7% 因而可用R=1.5来作为相邻两峰已完全分开的标志。
当两组分的色谱峰分离较差,峰底宽度难于测量时,可用半峰宽代替峰底宽度,并用下式表示分离度:
二、色谱分离基本方程式
由分离度基本方程式可看出:
(1)分离度与柱效的关系(柱效因子)分离度与n的平方根成正比。
(2)分离度与容量比的关系(容量因子),k >10 时,k/(k+1)的改变不大,对R的改进不明显,反而使分析时间在为延长。因此k值的最佳范围是1< k <10,在此范围内,既可得到大的R值,亦可使分析时间在不至于过长。使峰的扩展不会太严重对检测发生影响。
度从 1.0 增加至 1.5,对应于各 α 值所需的有效理论塔板数大致增加一倍。
分离度、柱效和选择性参数之间的联系为:
(3)分离度与柱选择性的关系(选择因子),α越大,柱选择性越好 , 分离效果越好。分离
三、分离操作条件的选择
1.载气及其流速的选择
ss 对一定的色谱柱和试样,有一个最佳的载气流速,此时柱效最高,根据下式
H=A+B/u+CU
用在不同流速下的塔板高度H对流速u作图,得H-u曲线图。在曲线的最低点,塔板高度 H 最小(H最小)。此时柱效最高。该点所对应的流速即为最佳流速u最佳,及H最小可由式微分求得:
当流速较小时,分子扩散(B项)就成为色谱峰扩张的主要因素,此时应采用相对分子质量较大的载气(N2,Ar),使组分在载气中有较小的扩散系数。而当流速较大时,传质项(C项)为控制因素,宜
采用相对分子质量较小的载气(H2,He),此时组分在载气中有较大的扩散系数,可减小气相传质阻力,提高柱效。
2.柱温的选择
柱温直接影响分离效能和分析速度。首先要考虑到每种固定液都有一定的使用温度。柱温不能高于固定液的最高使用温度,否则固定液挥发流失。
3.固定液的性质和用量
固定液对分离是起决定作用的。一般来说,担体的表面积越大,固定液用量可以越高,允许的进样量也就越多。为了改善液相传质,应使液膜薄一些。固定液液膜薄,柱效能提高,并可缩短分析时间。固定液的配比一般用5:100 到25:100,也有低于5:100的。不同的担体为要达到较高的柱效能,其固定液的配比往往是不同的。一般来说,担体的表面积越大,固定液的含量可以越高。
4.担体的性质和粒度
要求担体的表面积大,表面孔径分布均匀。这样,固定液涂在担体表面上成为均匀的薄膜,液相传质就快,柱效就可提高。担体粒度均匀、细小,也有利于柱效提高。但粒度过小,柱压降增大,对操作不利。
5.进样时间和进样量
进样必须快,一般在一秒钟之内。进样时间过长,会增大峰宽,峰变形。进样量一般液体0.1-5微升,气体0.1-10毫升,进样太多,会使几个峰叠加,分离不好。
6.气化温度
在保证试样不分解的情况下,适当提高气化温度对分离及定量有利。
第四节
固定相及其选择
一、气-固色谱固定相
在气—固色谱法中作为固定相的吸附剂,常用的有非极性的活性炭,弱极性的氧化铝,强极性的硅胶等。它们对各种气体吸附能力的强弱不同,因而可根据分析对象选用。一些常用的吸附剂及其一般用途均可从有关手册中查得。
二、气—液色谱固定相
1.担体
担体(载体)应是一种化学惰性、多孔性的颗粒,它的作用是提供一个大的惰性表面,用以承担固定液,使固定液以薄膜状态分布在其表面上。对担体有以下几点要求:
(1)表面应是化学惰性的,即表面没有吸附性或和吸附性很弱,更不能与被测物质起化学反应;
(2)多孔性,即表面积较大,使固定液与试样的接触面较大;
(3)热稳定性好,有一定的机械 强度,不易破碎;
(4)对担体粒度的要求,一般希望均匀、细小,这样有利于提高柱效。
气—液色谱中所用担体可分为硅藻土型和非硅藻土型两类。常用的是硅藻土型担体,它又是可分为红色担体和白色担体两种。在分析这些试样时,担体需加以钝化处理,以改进担体孔隙结构,屏蔽活性中心,提高柱效率。处理方法可用酸洗、碱洗、硅烷化等。
2.固定液
A.对固定液的要求
(1)挥发性小,在操作温度下有较低蒸气压,以免流失。
(2)稳定性好,在操作温度下不发生分解。在操作温度下呈液体状态。
(3)对试样各组分有适当的溶解能力,否则被载气带走而起不到分配作用。
(4)具有高的选择性,即对沸点相同或相近的不同物质有尽可能高的分离能力。
(5)化学稳定性好,不与被测物质起化学反应。
B.固定液的分离特征。
固定液的分离特征是选择固定液的基础。固定液的选择,一般根据―相似相溶‖原理进行,即固定液的性质和被测组分有某些相似性时,其溶解度就大。如果组分与固定液分子性质(极性)相似,固定液和被测组分两种分子间的作用力就强,被测组分在固定液中的溶解度就大,分配系数就大,也就是说,被测组分在固定液中溶解度或分配系数的大小与被测组分和固定液两种分子之间相互作用的大小有关。
分子间的作用力包括静电力、诱导力、色散力、和氢键力等。
固定液的极性可以采用相对极性P来表示。规定强极性的固定液β , β'氧二丙腈 的相对极性 P=100,非极性的固定液角鲨烷的相对极性P=0,然后用一对物质正丁烷-丁二烯或环己烷-苯进行试验,分别测定这一对试验物质在β , β'氧二丙腈,角鲨烷及欲测极性固定液的色谱柱上的调整保留值,然后计算欲测固定液的相对极性Px
这样测得的各种固定液的相对极性均在 0-100 之间,为了便于在选择固定液时参考,又将其分为五级,每20为一级,P在0~+1间为非极性固定液,+1~+2为弱极性固定液,+3为中等极性固定液,+4~+5为强极性固定液,非极性亦可用―氯化银电极作为内参比电极。
二、pH测定原理
当玻璃电极浸入被测溶液时,玻璃膜处于内部溶液 和待测溶液之间,这时跨越玻璃膜产生一电位差ΔEM(这种电位差称为膜电位),它与氢离子活度之间的关系符合能斯特公式:
三、电池组成在一定条件下电动势与溶液的pH之间呈直线关系,其斜率为2.303RT/F,25℃时为0.05916V,即溶液pH变化一个单位时,电动势将改变59.16mV(25℃)。这就是以电位法测定pH的依据。
第四节
离子选择性电极与膜电位
一、离子选择性电极
离子选择性电极是一种以电位法测量溶液中某些特定离子活度的指示电极。PH玻璃电极,就是具有氢离子专属性的典型离子选择性电极。
用离子选择性电极测定有关离子,一般都是基于内部溶液与外部溶液之间产生的电位差,即所谓膜电位。
二、膜电位的形成
以玻璃电极为例,玻璃电极浸入水溶液中时,形成一层很薄(10-4~10-5mm)的溶胀的硅酸层(水化层)。若膜的内、外侧水化层与溶液间的界面电位分别为E内及E试,则膜电位ΔEM应为:
第五节
离子选择性电极的选择性
理想的离子选择性电极是只对特定的一种离子产生电位响应。事实上,电极不仅对一种离子有
响应,与欲测离子共存的某些离子也能影响电极的膜电位。
荷,则考虑了干扰离子的膜电位的通式为:
Ki,j为干扰离子j对欲测离子i的选择性系数。可理解为在其它条件相同时提供相同电位的欲测离子的活度ai和干扰离子活度aj的比值:
-
设i为某离子选择性电极的欲测离子,j为共存的干扰离子,nj及ni分别为i离子及j离子的电
例如Ki,j=102(ni=nj=1),意味着aj一百倍于ai时,j离子所提供的电位才等于i离子所提供的电位。显然,Ki,j愈小愈好。选择性系数愈小,说明j离子对i离子的干扰愈小,亦即此电极对欲测离子的选择性愈好。
选择性系数可以估量某种干扰离子对测定造成的误差,根据Ki,j的定义,在估量测定的误差时可用下式计算:
第六节
离子选择性电极的种类和性能
离子选择性电极分类:
(1)原电极
⒈ 晶体(膜电极)a.均相膜电极 b.非均相膜电极 ⒉ 非晶体(膜)电极 a.刚性基质电极 b.活动载体电极
(2)敏化电极
⒈ 气敏电极 ⒉ 酶(底物)电极
一、晶体(膜)电极
这类电极的薄膜一般是由难溶盐经过加压或拉制成单、多晶或混晶的活性膜。晶体膜又可分为均相膜和非均相膜两类。均相膜电极的敏感膜由一种或几种化合物的均匀混合物的晶体构成,而非均相膜则除了电活性物质外,还加入某种惰性材料,其中电活性物质对膜电极的功能起决定性作用。如氟电极,将氟化镧单晶封在塑料管的一端,管内装 0.1mol/LnaF-0.1mol/LNaCl溶液(内部溶液),以Ag-AgCl电极作为内参比电极,即构成氟电极,氟化镧单晶可移动离子是F-,所以电极电位反映试液中F活度:
硫化银膜电极是另一常用的晶体膜电极,将AgS晶体粉末置于模具中,加压力使之形成一坚实的薄片装成电极。晶体中可移动离子是Ag+,所以膜电位对Ag+敏感。
二、非晶体(膜)-刚性基质电极
如表 4-1 列出阳离子玻璃电极的玻璃膜组成及性能。
三、活动载体电极(液膜电极)
此类电极是用浸有某种液体离子交换剂的惰性多孔膜作电极膜制成。
四、敏化电极
包括气敏电极、酶电极等。
气敏电极是基于界面化学反应的敏化电极。它是一种化学电池,由一对电极,即离子选择性电极(指示电极)与参比电极组成。这一对电极组装在一个套管内,管中盛电解质溶液,管的底部紧靠选择性电极敏感膜,装有透气膜,使电解与外部试液隔开。试液中待测组分气体扩散通过透气膜,进入离子电极的敏感膜与透气膜之间的极薄层内,使液层内某一能由离子电极测出组分的量。
酶电极也是一种基于界面反应敏化的离子电极。此处的界面反应是酶催化的反应。
五、离子敏场效应晶体管
ISFET 是在金属氧化物-半导体场效应晶体(MOSFET)基础上构成的,它既具有离子选择电极对敏感离子响应的特性,又保留场效应晶体管的性能。
第七节
测定离子活度的方法
用离子选择性电极测定离子活度时也是将它浸入待测溶液而与参比电极组成一电池,并测量其电动势。对于各种离子选择性电极,电池电动势如下公式:
动势可测定欲测离子的活度。•
标准曲线法
将离子选择性电极与参比电极插入一系列活(浓)度已确知的标准溶液,测出相应的电动势。然后以测得的E值对相应的lgai(lgci)值绘制标准曲线(校正曲线)。在同样条件下测出对应于欲测溶液的E值,即可从标准曲线 上查出欲测溶液中的离子活(浓)度。要求测定的是浓度,而离子选择性电极根据能斯特公式测量的则是活度。
在实际工作中,加入―离子强度调节剂‖来控制离子强度。• 标准加入法
设某一未知溶液待测离子浓度为cx,其体积为V0,测得电动势为E1,E1与cx 应符合如下关系:
式中x1是游离的(即未络合)离子的分数。
然后加入小体积VS(约为试样体积的1/100)待测待测离子的标准溶液,然后再测量其电动势E2,于是得:
工作电池的电动势在一定实验条件下与欲测离子的活度的对数值呈直线关系。因此通过测量电
第八节
影响测定的因素
• 温度 • 电动势的测量 • 干扰离子 • 溶液的 pH • 被测离子的浓度 • 响应时间 • 迟滞效应
第九节
电位滴定法
电位滴定法是一种用电位法确定终点的滴定方法。进行电位滴定时,在待测溶液中插入一个指示电极,并与一参比电极组成一个工作电池。随着滴定剂的加入,由于发生化学反应,待测离子或与之有关的离子的浓度不断变化,指示电极电位也发生相应的变化。而在化学计量点附近发生电位的突跃,因此,测量电池电动势的变化,就能确定滴定终点。由此可见,电位滴定与电位测定法不同,它是以测量电位的变化情况为基础的。
滴定终点的确定方法通常有下列三种方法。现讨论几种确定终点的方法。1.E—V 曲线法
用加入滴定剂的体积(V)作横坐标,电动势读数(E)作纵坐标,绘制 E-V 曲线,曲线上的转折点即为化学计量点。
2.绘(Δ E/ΔV)–V 曲线法
Δ E/ΔV 值对 V 作图,可得一呈现尖峰状极大的曲线,尖峰所对应的 V 值即为滴定终点。
3.二级微商法
二级微商 Δ2E/ΔV2 =0 时就是终点。计算方法如下:
对应于 24.30mL:
第十节
电位滴定法的应用和指示电极的选择
1.酸碱滴定:pH 玻璃电极作指示电极,甘汞电极作参比电极 2.氧化还原滴定:铂电极作指示电极,以甘汞电极作参比电极 3.沉淀滴定:根据不同沉淀反应采用不同指示电极。4.络合滴定:指示电极用铂电极、参比电极用甘汞电极。
第五章 极谱分析法
基本要点:
1.了解极谱分析法的基本原理; 2.掌握极谱定量依据-扩散电流方程式; 3.理解极谱干扰电流及其消除方法; 4.掌握半波电位及其极谱波方程式; 5.了解新极谱法的原理和应用。
第一节
极谱分析概述
一、极谱分析的基本装置
极谱分析是一种在特殊条件下进行的电解过程。装置如图5-1所示。
以滴汞电极为阴极,饱和甘汞为阳极进行电解,当C点在分压电阻(R)上自左向右逐渐和均匀移动时,工作电池E施加给两极上的电压逐渐增大。在此过程中C点的每一个位置都可以从电流表A和电压表V上测得相应的电流i和电压V值。从而可绘制成i-V曲线(图5-2),此曲线呈阶梯形式,称为极谱波。最后可根据极谱波对被测物质进行分析。
二、极谱波
极谱波可分为如下几部分:
① 残余电流部分 ② 电流上升部分 ③ 极限电流部分
在排除了其他电流的影响以后,极限电流减去残余电流后的值,称为极限扩散电流,简称扩散电流(用id表示)。id与被测物(Cd2+)的浓度成正比,它是极谱定量分析的基础。当电流等于极限电流的一半时相应的滴汞电极电位,称为半波电位(用E1/2表示)。不同的物质具有不同的半波电位,这是极谱定性分析的根据。
三、极谱过程的特殊性
1.电极的特殊性
电极的特殊性表现在极谱分析是用一个通常是面积很小的滴汞电极,另一个通常是面积很大的饱和甘汞电极(而一般电解分析使用二个面积大的电极)。极化电极也可以是其他的固体微电极,但通常情况下,均使用滴汞电极,因为它有如下优点:
① 汞滴的不断下滴,电极表面吸附杂质少,表面经常保持新鲜,测定的数据重现性好;
② 氢在汞上的超电位比较大;
③ 许多金属可以和汞形成汞齐;
④ 汞易提纯。缺点是:
① 汞易挥发且有毒;
② 汞能被氧化;
③ 汞滴电极上残余电流大,限制了测定灵敏度。
2.电解条件的特殊性
电解条件的特殊性表现在极谱分析是溶液保持静止并且使用了大量的电解质。溶液保持静止,则对流切向运动可忽略不计;加入大量电解质,则可消除离子的电迁移运动。
第二节
极谱定量分析
一、尤考维奇方程式
此式为瞬时电流扩散公式。表示滴汞电极的扩散电流(id)t随时间而增加,也就是随着汞滴表面积的增长而作周期性的变化。当 t=0 时,(id)t =0;t= τ(滴汞周期,即汞滴从开始生长到滴下所需的时间)时,(id)t为最大用(id)t最大表示:
扩散电流随时间而变化,但由于汞滴周期性地下落,扩散电流周期性地重复变化。通常在极谱分析中使用长周期的检流计。它记录的是平均电流,因此可以用每一滴汞滴在整个成长过程中所流过电量的库仑数
仪器分析教案
本文2025-01-29 23:49:52发表“合同范文”栏目。
本文链接:https://www.wnwk.com/article/490890.html
- 二年级数学下册其中检测卷二年级数学下册其中检测卷附答案#期中测试卷.pdf
- 二年级数学下册期末质检卷(苏教版)二年级数学下册期末质检卷(苏教版)#期末复习 #期末测试卷 #二年级数学 #二年级数学下册#关注我持续更新小学知识.pdf
- 二年级数学下册期末混合运算专项练习二年级数学下册期末混合运算专项练习#二年级#二年级数学下册#关注我持续更新小学知识 #知识分享 #家长收藏孩子受益.pdf
- 二年级数学下册年月日三类周期问题解题方法二年级数学下册年月日三类周期问题解题方法#二年级#二年级数学下册#知识分享 #关注我持续更新小学知识 #家长收藏孩子受益.pdf
- 二年级数学下册解决问题专项训练二年级数学下册解决问题专项训练#专项训练#解决问题#二年级#二年级数学下册#知识分享.pdf
- 二年级数学下册还原问题二年级数学下册还原问题#二年级#二年级数学#关注我持续更新小学知识 #知识分享 #家长收藏孩子受益.pdf
- 二年级数学下册第六单元考试卷家长打印出来给孩子测试测试争取拿到高分!#小学二年级试卷分享 #二年级第六单考试数学 #第六单考试#二年级数学下册.pdf
- 二年级数学下册必背顺口溜口诀汇总二年级数学下册必背顺口溜口诀汇总#二年级#二年级数学下册 #知识分享 #家长收藏孩子受益 #关注我持续更新小学知识.pdf
- 二年级数学下册《重点难点思维题》两大问题解决技巧和方法巧算星期几解决周期问题还原问题强化思维训练老师精心整理家长可以打印出来给孩子练习#家长收藏孩子受益 #学霸秘籍 #思维训练 #二年级 #知识点总结.pdf
- 二年级数学下册 必背公式大全寒假提前背一背开学更轻松#二年级 #二年级数学 #二年级数学下册 #寒假充电计划 #公式.pdf


