电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

2018考研数学必看重点:定积分证明三大解题思路_毙考题(精选5篇)

栏目:合同范文发布:2025-01-29浏览:1收藏

2018考研数学必看重点:定积分证明三大解题思路_毙考题(精选5篇)

第一篇:2018考研数学必看重点:定积分证明三大解题思路_毙考题

下载毙考题APP

免费领取考试干货资料,还有资料商城等你入驻

2018考研数学必看重点:定积分证明三大解题思路

在考研数学中,定积分及其应用这部分知识点考察形式多样,是每年考察的重点,而定积分证明就是常见形式之一,大家需要加以重视,下面一起来看看这类题目的解题思路吧。

2、定积分中值定理命题的证明。一般利用连续函数的介值定理、微分中值定理、积分中值定理等来证明,其关键是构造辅助函数。

3、定积分不等式的证明。一般有三种方法。

①利用被积函数的单调性、定积分的保序性和估值定理证明。

②将定积分的上(下)限改为变量,从而将定积分不等式化为函数不等式,再用微分学方法证明。

③利用微分中值定理、积分中值定理(适用于已知条件中有连续性和一阶可导性)与泰勒公式(适用于题设中有二阶以上可导性)。

考试使用毙考题,不用再报培训班

邀请码:8806

下载毙考题APP

免费领取考试干货资料,还有资料商城等你入驻

考试使用毙考题,不用再报培训班

邀请码:8806

第二篇:2016考研数学:定积分的证明

2016考研数学:定积分的证明

定积分及其应用这部分内容在历年真题的考察中形式多样,是考试的重点内容。启航考研龙腾网校老师希望同学们要加以重视!

定积分的证明是指证明题目中出现积分符号的一类题目,一般的解题思路和常见的证明题大同小异,但是由于积分符号的出现,往往使得同学们有这样那样的不适应,在这里呢,和同学们一起总结下关于这类题目的一般解题思路。常见的关于定积分的证明,主要包括以下几

题。

2、定积分中值定理命题的证明。一般利用连续函数的介值定理、微分中值定理、积分中值定理等来证明,其关键是构造辅助函数。

3、定积分不等式的证明。一般有三种方法。①利用被积函数的单调性、定积分的保序性和估值定理证明。

②将定积分的上(下)限改为变量,从而将定积分不等式化为函数不等式,再用微分学方法证明。

③利用微分中值定理、积分中值定理(适用于已知条件中有连续性和一阶可导性)与泰勒公式(适用于题设中有二阶以上可导性)。

第三篇:2018考研数学解题思路分享(精选)

2018考研数学解题思路分享

考研数学中有些解题方法思路都是共通的,遇到类似题目就照着步骤来。下面中公考研为考生分享一些数学解题思路,希望对考生有所帮助。

一、高数解题的四种思维定势

第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

二、线性代数解题的八种思维定势

第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。

第四句话:若要证明一组向量α1,α2,„,αS线性无关,先考虑用定义再说。第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理

第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

三、概率解题的九种思维定势

第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式

第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式

第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组

第四句话:若题设中给出随机变量X~N则马上联想到标准化~N(0,1)来处理有关问题。第五句话:求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。

第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。

第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。即令

第八句话:凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。

第九句话:若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用卡方分布,t分布和F分布的定义进行讨论。来源:中国研究生招生信息网

第四篇:2014考研数学备考重点解析——定积分的计算和证明

2014考研数学备考重点解析——定积分的计算和证明

1.定义:b

af(x)dxlimf(k)xk 0k1n

2.可积性:

1)必要条件:f(x)有界;

2)充分条件:f(x)连续或仅有有限个第一类间断点;

3.计算1)b

af(x)dxF(b)F(a)

2)换元法

3)分部积分法

4)利用奇偶性,周期性

5)利用公式 n1n31,n偶nnnn222(1)2sinxdx2cosxdx 00n1n32,n奇nn23

(2)

4.变上限积分:π0xf(sinx)dx20f(sinx)dx x

af(t)dt

1)连续性:设f(x)在[a,b]上可积,则

2)可导性:设f(x)在[a,b]上连续,则

变上限求导的三个类型: xaxaf(t)dt在[a,b]上连续。f(t)dt医学考研论坛在[a,b]上可导且(f(t)dt)f(x).ax

(x)(1)f(t)dtf((x))(x)f((x))(x)(x)

(x)x(2)f(x,t)dt例1:F(x)(tx)f(t)dx 0(x)

bdx2(3)f(x,t)dt例2:sin(xt)dt0adx

3)奇偶性:i)若f(x)为奇函数,则x

0f(t)dt为偶函数。

ii)若f(x)为偶函数,则5.性质:

x0

f(t)dt为奇函数。

1)不等式:i)若f(x)g(x), 则

ba

f(x)dxg(x)dx.a

b

ii)若f(x)在[a,b]上连续,则m(ba)iii)

ba

f(x)dxM(ba).

ba

f(x)dx|f(x)|dx.a

b

2)中值定理: i)若f(x)在[a,b]上连续,则

ba

f(x)dxf(c)(ba),acb

g(x)不变号,则

ii)若f(x),g(x)在[a,b]上连续医学考研论坛,

ba

f(x)g(x)dxf(c)g(x)dx,acb.a

b

【例1】I

n0

x dx;

【解法1】原式=n=n=n=n

sin2



(cossin)2 cosxsinx

(cosxsinx)dx(sinxcosx)22n.

40

【解法2】原式=n

54



54

sin2xdx

=n

(cosxsinx)2dx

454

=n



(sinxcosx)dx2.ex4

sinxdx;【例2】 I

1ex2

xt

ee44

sinxdx2sintdt【解析】I2

xt1e1e22

(xt)

sin1ettdt



12ex1442sinxdxsinxdx

1ex221ex

2

2sinxdx

22

sin4xdx

313

海文考研钻石卡 

42216

【例3】 已知f(x)连续,【解析】令xtu得

x0

tf(xt)dt1cosx,求2f(x)dx的值.

x

tf(xt)dt(xu)f(u)duxf(u)duuf(u)du,xxx

xxxdx,从而有tf(xt)dtf(u)duxf(x)xf(x)f(u)duf(u)dusinx 0000dx

令x

f(u)dusin

1.1n

12n

【例4】 求 lim121n21n2nn

11222n212n

(2)ln1(2)ln1(2) 【解析】令yn(12)(12)(12),则lnynln1nnnnnnn

n

2x2

ln22(1)limlnynln(1x)dxxln(1x)001x20n4

原式e

ln22(1

)

2e

2

.【例5】 求证:【解析】

sinx2dx0.2

2

sinxdx =

sint20

(令x2t)

sint2t



2

sint2t



2

2

sinusint

=du(令tu)

2u

sinxdx

0

sint11

dt0.2t

【例6】 设f(x)在[a,b]上连续,单调增。求证:【证法1】令F(x)

bab

axf(x)dx2af(x)dx

b

xa

tf(t)

xax

f(t)dt a2

只要证明F(b)0,显然F(a)0

2a1x

f(x)f(t)dt 22a

x1

=(xa)f(x)f(t)dt

a2

=(xa)f(x)(xa)f(c)(acx)

而F(x)xf(x)0 则F(b)F(a)0 原式得证.【证法2】由于f(x)在[a,b]上单调海文考研钻石卡增,则

(x

abab)(f(x)f())0 22

从而有即又则即

b

ba

(x

abab)f(x)f()dx0 22

ababbab

(x)f(x)dxf()(x)dx0 a

22a2bab(x)dx0 a

2bab(x)f(x)dx0 a

2babbxf(x)dxf(x)dx.aa2

第五篇:2018考研数学三一定要买的参考书_毙考题

下载毙考题APP

免费领取考试干货资料,还有资料商城等你入驻

2018考研数学三一定要买的参考书

考研参考书不在于多,而在于精。很多资料都具有重复性,买多了只不过是浪费。数学三选什么参考书呢?小编推荐下面这些一定要买!

(一)教材,高数同济版的;线代统计五版;概率论浙大四版

但这里不得不提醒大家,这四本书如果全部看下来掌握透彻,是需要很大时间和精力的;里面很多东西是所不考的,即使大纲里有。其实在复习的时候,很多同学把过多的精力,放在了那些不考,而且比较偏的题目上。就会导致大量的精力浪费。为此,常老师在教授数学中,就会提前给一份预习大纲,哪些考哪些不考;课后习题哪些做,哪些不做。从而能让大家精力聚焦;(二)李永乐的复习全书

这个各个机构再怎么吹捧,这本书的经典性是毋庸置疑。强化时期结合教材做3-5遍,会取得意想不到的效果。常老师还是那句话:题不在多,做精则灵;(三)真题

不管怎么说,每一本习题里都参照了不少真题原型,甚至直接就是真题。真题的价值不必多说。但是每个同学对待的也很简单,只要做对了,就pass掉了。不回头去想你的做法或者你的思维是否符合命题人的要求。关于真题,对于比较好的典型题做5遍左右是比较合适的。对一些很常规的题,可以2-3遍就可以了。总之一定要深刻研究真题,让真题的价值发挥到最大。常老师忠告:市面上教辅书很多,只要你选择大家公认的,把其价值发挥到大,认真去研究就足够了。不要人云亦云,购买过多的教辅书,导致自己精力分散,反而没有达到考研要求的深度和难度。

考试使用毙考题,不用再报培训班

邀请码:8806

2018考研数学必看重点:定积分证明三大解题思路_毙考题(精选5篇)

第一篇:2018考研数学必看重点:定积分证明三大解题思路_毙考题 下载毙考题APP 免费领取考试干货资料,还有资料商城等你入驻...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部