电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

植物生理学问答题

栏目:合同范文发布:2025-01-29浏览:1收藏

植物生理学问答题

第一篇:植物生理学问答题

答:植物的成花包括三个阶段:

(1)成花诱导,经某种环境信号刺激诱导,植物改变发育进程,从营养生长向生殖生长转变;

(2)成花启动,分生组织经一系列变化分化成形态上可辨认的花原基,亦称之为花的发端;

(3)花的发育,即花器官的形成和生长。

2.什么是春化作用?如何证实植物感受低温的部位是茎尖生长点。

答:低温诱导促使植物开花的作用叫春化作用。

栽培于温室内中的芹菜,由于得不到花分化所需的低温,不能开花结实。如果用胶管把芹菜茎尖缠绕起来,通入冷水,使茎的生长点得到低温,就能通过春化而在长日下开花;反之,如果将芹菜植株置于低温条件下,向缠绕茎尖的胶管通入温水,芹菜则不能通过春化而开花。上述结果能证明植物感受低温的部位是茎尖生长点(或其它能进行细胞分裂的组织)。

答:许多植物经低温处理后,体内赤霉素含量增加;用赤霉素生物合成抑制剂处理会抑制春化作用。许多需春化的植物,如二年生天仙子、白菜、甜菜和胡萝卜等不经低温处理就只长莲座状的叶丛,而不能抽薹开花,但使用赤霉素却可使这些植物不经低温处理就能开花,这些都表明赤霉素与春化作用有关,可以部分代替低温的作用。但赤霉素并不能诱导所有需春化的植物开花。植物对赤霉素的反应也不同于低温,被低温诱导的植物抽薹时就出现花芽,而对赤霉素起反应的莲座状植物,茎先伸长形成营养枝,花芽以后才出现。总之,赤霉素与春化作用的关系很复杂,有待进一步研究。

答:尽管对春化作用已研究了几十年,但对其作用机理还了解甚少。

梅尔彻斯(Melchers)和兰(Lang)1965年曾提出如下假说:春化作用由两个阶段组成,第Ⅰ阶段是春化作用的前体物在低温下转变成不稳定的中间产物;第Ⅱ阶段是不稳定的中间产物再在低温下转变成能诱导开花的最终产物,从而促进植物开花。这种不稳定中间产物如遇高温会被破坏或分解,所以若在春化过程中遇上高温,则春化作用会被解除。

植物发育的每一时期中,都伴随着特异基因的表达。春化过程诱导一些特异基因的活化、转录和翻译,从而导致一系列生理生化代谢过程的改变,最终进入花芽分化、开花结实。

答:(1)人工春化,加速成花如将萌动的冬小麦种子闷在罐中,放在0~5℃低温下40~50天,可用于春天补种冬小麦;在育种工作中利用春化处理,可以在一年中培育3~4代冬性作物,加速育种进程;为了避免春季“倒春寒”对春小麦的低温伤害,可对种子进行人工春化处理后适当晚播,使之在缩短生育期的情况下正常成熟;春小麦经低温处理后,可早熟5~10天,既可避免不良的气候(如干热风)的影响,又有利于后季作物的生长。

(2)指导引种引种时应注意原产地所处的纬度,了解品种对低温的要求。若将北方的品种引种到南方,就可能因当地温度较高而不能顺利通过春化阶段,使植物只进行营养生长而不开花结实,造成不可弥补的损失。

(3)控制花期如低温处理可以使秋播的一、二年生草本花卉改为春播,当年开花;对以营养器官为收获对象的植物,可贮藏在高温下使其不通过春化(如当归),或在春季种植前用高温处理以解除春化(如洋葱),可抑制开花,延长营养生长,从而增加产量和提高品质。

答:自然界一昼夜间的光暗交替称为光周期。生长在地球上不同地区的植物在长期适应和进化过程中表现出生长发育的周期性变化,植物对白天黑夜相对长度的反应,称为光周期现象。植物的开花、休眠和落叶,以及鳞茎、块茎、球茎等地下贮藏器官的形成都受昼夜长度的调节,其中研究最多的是植物成花的光周期诱导。根据植物开花对光周期的反应,将植物分为三种主要的光周期类型。

(1)长日植物在昼夜周期中日照长度长于某临界值时数才能成花的植物。如小麦、大麦、黑麦、油菜、天仙子等。

(2)短日植物在昼夜周期中日照长度短于某临界值时数才能成花的植物。如大豆、苍耳、菊花、晚稻、美洲烟草等。

(3)日中性植物只要其他条件满足,在任何长度的日照下都能成花的植物。如月季、黄瓜、番茄、四季豆、向日葵等。

答:植物在适宜的光周期诱导后,成花部位是茎端的生长点,而感受光周期的部位却是叶片。这一点可以用对植株不同部位进行光周期处理后观察对开花效应的情况来证明:①将植物全株置于不适宜的光周期条件下,植物不开花而保持营养生长;②将植物全株置于适宜的光周期下,植物可以开花;③只将植物叶片置于适宜的光周期条件下,植物正常开花;④只将植物叶片置于不适宜的光周期下,植物不开花。

用嫁接试验可证明植物的光周期刺激可能是以某种化学物质来传递的:如将数株短日植物苍耳嫁接串联在一起,只让其中一株的一片叶接受适宜的短日光周期诱导,而其它植株都在长日照条件下,结果数株苍耳全部开花。

答:将此新植物种分别置于不同的光周期条件下,其它条件控制在相同适宜范围,观察它的开花反应。若日照时数只有在短于一定时数才能开花,表明此种植物为短日植物;若日照时数只有在长于一定时数才能开花,则为长日植物;如在不同的日照时数下均能开花的,则为日中性植物。或将新植物种分别置于一定的光周期条件下,在暗期给予短暂的光照处理,抑制开

花的是短日植物,促进开花的是长日植物,对暗期照光不敏感的为日中性植物。

9.用实验说明暗期和光期在植物的成花诱导中的作用。

答:对植物进行不同时间长度的光暗处理,可以发现:①短日植物需暗期长于一定时数才能开花,如在24h的光暗周期中,短日植物苍耳需暗期长于8.5h才能开花,如果处于16h光照和8h暗期就不能开花;②用短时间的黑暗打断光期,并不影响光周期成花诱导;③用闪光处理中断暗期,则使短日植物不能开花,继续营养生长,相反地,反而诱导了长日植物开花。这些结果说明,在植物的光周期诱导成花中,暗期的长度是植物成花的决定因素。

强调了暗期的重要性,并不是说光期不重要,只有在适当暗期以及昼夜交替作用下,植物才能正常开花。暗期的长度决定植物是否发生花原基,而光期长度决定了花原基的数量,如果没有光期的光合作用,那么花原基分化所需的养料也就没有了。光期的作用不仅与光合作用有关,而且对成花诱导本身也有关系。如大豆固定在16小时暗期和不同长度光期条件下生育,结果指出:①当光期长度小于2小时时,植株不能开花;②在2~10小时的范围内,随光期长度增加开花数也增加;③当光期长度大于10小时后,开花数反而下降。实验表明,只有在适当的光暗交替条件下,植物才能正常开花。

10.为什么说光敏色素参与了植物的成花诱导过程?它与植物成花之间有何关系?

答:用不同波长的光间断暗期的试验表明,无论是抑制短日植物开花,还是促进长日植物开花,都是以600~660nm波长的红光最有效;且红光促进开花的效应可被远红光逆转。这表明光敏色素参与了成花反应,光的信号是由光敏色素接受的。光敏色素有两种可以互相转化的形式:吸收红光的Pr型和吸收远红光的Pfr型。Pr是生理钝化型,Pfr是生理活化型。照射白光或红光后,Pr型转化为Pfr型;照射远红光后,Pfr型转化为Pr型。光敏色素对成花的作用与Pr和Pfr的可逆转化有关,成花作用不是决定于Pr和Pfr的绝对量,而是受Pfr/Pr比值的影响。低的Pfr/Pr比值有利短日植物成花,而相对高的Pfr/Pr比值有利长日植物成花。

答:实验证实多种植物激素与植物的成花有关系,其中赤霉素、生长素和细胞分裂素影响较大。但到目前为止未发现一种激素可以诱导所有光周期特性相同的植物在不适宜的光周期条件下开花。因此,可以这样认为:植物的成花过程(包括花芽分化和发育)可能不是受某一种激素的单一调控,而是受几种激素以一定的比例在空间上(激素作用的部位)和时间上(花器官诱导与发育时期)的多元调控。植物的成花过程是分段进行的,在不同的光周期条件下,是通过刺激或抑制各种植物激素之间的协调平衡来控制植物成花的。在适宜的光周期诱导下或外施某种植物激素,可改变原有的激素比例关系而建立新的平衡。新建立的平衡会诱导与成花过程有关的基因的开启,合成某些特殊的mRNA和蛋白质,从而起到调节成花的作用。

答:1937年柴拉轩就提出,植物在适宜的光周期诱导下,叶片产生一种类似激素性质的物质即“成花素”,传递到茎尖端的分生组织,从而引起开花反应。1958年柴拉轩提出了“成花素假说”用于解释赤霉素在开花中的作用的。他认为成花素是由形成茎所必须的赤霉素和形成花所必须的开花素两种互补的活性物质所组成,开花素必须与赤霉素结合才表现活性。植物必须形成茎后才能开花,即植物体内存在赤霉素和开花素两种物质时,才能开花。日中性植物本身具有赤霉素和开花素,所以无论在长、短日照条件下都能开花;而长日照植物在长日条件下、短日照植物在短日条件下,都具有赤霉素和开花素,因此,都可以开花;但长日照植物在短日条件下缺乏赤霉素、而短日照植物在长日条件下缺乏开花素,所以都不能开花;冬性长日植物在长日条件下具有开花素,但无低温条件时,缺乏赤霉素的形成,所以仍不能开花。赤霉素是长日植物开花的限制因素子,而开花素是短日植物开花的限制因素子。因此,用赤霉素处理处于短日条件下的某长日植物可使其开花,但赤霉素处理处于长日条件下的短日植物则无效。

然而到目前为止,开花素并没有找到,成花素假说也缺少足够的实验证据,但是成花素假说所提出的开花激素复合物以及不同类型植物中存在不同的限制开花因子的概念,对于进一步认识开花这个复杂过程的控制机理,是很有启发意义的。

答:一般起源于低纬度地区的植物多属于短日植物,因为这些地区终年的日照长度都接近12小时,没有更长的日照条件;起源于高纬度地区的植物多属于长日植物,因为这些地区的生长季节正好处于较长日照的时期;中纬度地区则长日植物短日植物都有,长日植物在日照较长的春末和夏季开花,如小麦、油菜等;而短日植物在日照较短的秋季开花,如晚稻、大豆、菊花等。

答:(1)指导引种不同纬度地区引种时要考虑品种的光周期特性和引种地区生长季节的日照条件,对以收获种子为主的作物,若是短日植物,比如大豆,从北方引种到南方,会提前开花,应选择晚熟品种;而从南方引种到北方,则应选择早熟品种。如将长日植物从北方引种到南方,会延迟开花,宜选择早熟品种;而从南方引种到北方时,应选择晚熟品种。否则,就有可能使植物提早或推迟开花,而造成减产甚至颗粒无收。

(2)育种上的利用根据作物光周期特性,利用中国气候多样的特点,可进行作物的南繁北育:短日植物水稻和玉米可在海南岛加快繁育种子;长日植物小麦夏季在黑龙江、冬季在云南种植,可以满足作物发育对光照和温度的要求,一年内可繁殖2~3代,加速了育种进程,缩短育种年限。

具有优良性状的某些作物品种间有时花期不遇,无法进行有性杂交育种。通过人工控制光周期,可使两亲本同时开花,便于进行杂交。如早稻和晚稻杂交育种时,可在晚稻秧苗4~7叶期进行遮光处理,促使其提早开花以便和早稻进行杂交授粉,培育新品种。如在进行甘薯杂交育种时,可以人为地缩短光照,使甘薯开花整齐,以便进行有性杂交,培育新品种。(3)控制花期花卉栽培中,光周期的人工控制可以促进或延迟开花。如短日植物菊花,用遮光缩短光照时间的办法,可以从十月份提前至六、七月间开花;若在短日来临之前,人工补充延长光照时间或进行暗期间断,则可推迟开花。对于长日性的花卉,如杜鹃、山茶花等,人工延长光照或暗期间断,可提早开花。

(4)调节营养生长和生殖生长对以收获营养体为主的作物,可以通过控制光周期抑制其开花。如将短日植物烟草引种至温带,可提前至春季播种,促进营养生长,提高烟叶产量。对于短日植物麻类,南种北引可推迟开花,增加植物高度,提高纤维产量和质量,15.南麻北种有何利痹?为什么?

答:麻类是短日植物,南种北引可推迟开花,营养生长期长,使麻杆生长较长,提高纤维产量和质量,但因为北方地区较难满足短日作物麻类成花所需的短日条件,因而南麻北种会延迟开花,种子不能及时成熟。若在留种地采用苗期短日处理方法,可解决留种问题。

16.影响植物花器官的形成的条件有哪些?

答:(1)内因:①营养状况营养是花芽分化以及花器官形成与生长的物质基础。其中的碳水化合物对花的形成尤为重要,C/N过小,营养生长过旺,影响花芽分化。

②内源激素花芽分化受内源激素的调控。如GA可抑制多种果树的花芽分化;CTK、ABA和乙烯则促进果树的花芽分化;IAA在低浓度起促进作用而高浓度起抑制作用。一般说来,当植物体内淀粉、蛋白质等营养物质丰富,CTK和ABA含量较高而GA含量低时,有利于花芽分化。

(2)外因:①光照光照对花器官形成有促进作用。在植物花芽分化期间,若光照充足,有机物合成多,则有利于花芽分化。此外,光周期还影响植物的育性,如湖北光敏感核不育水稻,在短日下可育,在长日下不育。

②温度一般植物在一定的温度范围内,随温度升高而花芽分化加快。温度主要影响光合作用、呼吸作用和物质的转化及运输等过程,从而间接地影响花芽的分化。低温还影响减数分裂期花粉母细胞的发育,使其不能正常分裂。

③水分不同植物的花芽分化对水分的需求不同,如对稻麦等作物来说,孕穗期对缺水敏感,此时缺水影响幼穗分化;而对果树而言,夏季的适度干旱可提高果树的C/N比,反而有利于花芽分化。

④矿质营养缺氮,花器官分化慢且花的数量减少;氮过多,营养生长过旺,花的分化推迟,发育不良。在适宜的氮肥条件下,如能配合施用磷、钾肥,并注意补充锰、钼、硼等微量元素,则有利于花芽分化。

答:(1)与高等动物相比,植物的性别表现具有多样性和易变性,主要表现特点为:①雌雄性别间的差别主要表现在花器官以及生理上,一般无明显第二性征。②性别分化表现出多种形式,主要类型有雌雄同株同花型,雌雄同株异花型、雌雄异株型、雌花两性花同株型、雌花两性花异株型、雄花两性花同株型、雄花两性花异株型等。③一般在个体发育后期才能完成性别表达,其性别分化极易受环境因素和化学物质的影响。

(2)研究植物的性别分化,不仅理论上有意义,也有实际意义。不少有经济价值的植物都存在性别差异问题,如银杏、千年桐、杜仲、番木瓜、大麻等,都是雌雄异株型植物,而雄株和雌株的经济价值不同,如以收获果实或种子为栽培目的的,需要培育雌株;而以纤维为收获对象的大麻,则其雄株的纤维拉力较强,需要培育雄株。对于雌雄同株异花型的瓜类,生产上往往希望提早分化雌花并增加雌花的数量,以获取更大的经济效益。因此,如何在早期鉴别植物尤其那些雌雄异株的木本植物的性别、如何调节雌雄花的分化等是生产中迫切需要解决的实际问题,受到人们的重视和关注。

答:性别分化的调控因素:

(1)遗传控制植物性别表现类型的多样性有其不同的遗传基础。

(2)年龄雌雄同株异花的植物的性别分化随年龄而发生变化。通常是先出现雄花,然后是两性花和雄花混合出现,最后才出现雌花。

(3)环境条件主要包括光周期、温周期和营养条件等。经过适宜光周期诱导的植物能开花,但雌雄花的比例却受诱导之后的光周期影响,如果植物继续处于适宜的光周期下,可促进多开雌花,否则,多开雄花。较低的夜温与较大的昼夜温差对许多植物的雌花发育有利。一般水分充足,氮肥较多时促进雌花分化,而土壤较干旱、氮肥较少时则雄花分化较多。另外,烟薰、折伤也可促进雌花分化。

(4)植物激素不同性别植株或性器官的植物激素含量有所不同。外施植物生长物质也影响植物的性别表现。如,IAA和乙烯增加雌株和雌花;CTK有利于雌花形成,GA增加雄株和雄花;三碘苯甲酸和马来酰肼抑制雌花,而矮壮素抑制雄花形成。

19.根据光合作用碳素同化途径的不同,可以将高等植物分为哪三个类群?它们主要的生 理特征是什么? 光合作用碳同化途径有三条:即C3途径(卡尔文循环或光合碳循环)、C4-二羧酸途径及景天酸代谢途径。C3途径是光合碳循环的基本途径,CO2的接受体是RuBP,在RuBP羧化酶催化下,形成两 分子三碳化合物3-PGA。C4途径是六十年代中期在玉米、甘蔗、高梁等作物上发现的另一代谢途径。CO2与PEP在 PEP羧化酶作用下,形成草酰乙酸,进而形成苹果酸或天冬氨酸等四

碳化合物。景天酸代谢途径又称CAM途径。光合器官为肉质或多浆的叶片,有的退化为茎或叶柄。其特 点是气孔昼闭夜开,夜晚气孔开放时,CO2进入叶肉细胞,在PEP羧化酶作用下,将CO2 与PEP羧化为草酰乙酸,还原成苹果酸,贮藏在液泡中。白天光照下再脱羧参与卡尔文循环。

只有C3途径的植物叫C3植物,除C3途径外还有C4途径的植物叫C4植物,除C 3途径外还有CAM途径的植物叫CAM植物。

高等植物碳同化途径有卡尔文循环,C4途径和CAM途径三条(4分)。只有卡尔文循环才具备合成淀粉等光合产物的能力,而C4途径和CAM途径只起到固定和转运CO2的作用(4分)。

21.简述生长素促进细胞生长的机理。

长素促进生长的作用首先是生长素与质膜上的生长素受体结合,然后产生两方面的效应:一方面是,生长素与受体结合后,活化了质膜上的质子泵(H+-ATP酶)。活化了的 质子泵将细胞内的质子(H+)泵出细胞而进入细胞壁。进入细胞壁中的H+既可使壁中对酶 不稳定的键断裂,也可使细胞壁中的胞壁松驰酶在酸性条件下被活化而使某些键断裂,从而造成细胞壁软化,细胞的压力势下降,结果引起细胞吸水扩大,这是生长素引起的快速反应。另一方面,生长素与受体结合后释放出第二信使。第二信使进入核内后,使某些处于抑制状态的基因解阻遏,这些基因便进行转录和翻译,合成新的蛋白质,促进细胞的生长,这是生长素的长期效应。生长素就是通过上述快速反应和长期效应促进细胞生长的。

22.什么叫春化作用和春化处理?它在农业上有哪些应用?

低温促进冬性植物开花的作用叫春化作用。用人工方法满足植物对低温的要求,能加 速其发育进程,促进开花结实的办法。叫春化处理。春化处理在生长上有一定作用

①调节播种期,如当秋季雨水多或前作收获太晚,不能及时秋播冬小麦时,即可采处用春化 法理萌动的种子,到春天播种。

②控制开花:如洋葱,当归等植物,用高温进行去春化处理,可能抑制其抽苔开花而获得品 质好,产量高的鳞茎或块根。

23.农谚讲“旱长根、水长苗”是什么意思?道理何在?

根和地上部分的关系是既互相促进、互相依赖、又互相矛盾、互相制约的。根系生长 需要地上部供给光合产物、生长素和维生素,而地上部分生长又需根部吸收的水分,矿质和 根部合成的多种氨基酸和细胞分裂素等,这就是两者相互依存、互相促进的一面,所以说树 大根深、根深叶茂。但两者又有相互矛盾、相互制约一面,例如过分旺盛的地上部分的生长 会抑制地下部分的生长,只有两者比例比较适当,才可获得高产。在生产上,可用人工的方 法加大或降低根冠比,一般说来,降低土壤含水量、增施磷钾肥、适当减少氮肥、中耕等,都有利于加大根冠比,反之则降低根冠比。

24.果树栽培上为什么会出现开花结实的大小年现象?应如何克服?

果树生产上常有一年产量高、一年产量低的大小年现象,这是由于营养生长与生殖生 长不协调所引起的。当果树结实过多时,会消耗大量营养,削弱了当年枝叶的生长,使枝条 中贮存的养料不足,花芽形成受阻,花芽数减少,发育亦不良,致使第二年花果减少,座果 率低,造成产量上的小年。由于小年结实少,使树体营养状况得以恢复,相应积累较多,枝 条生长良好,促使结果母枝数量增加,并有足够养分供给花芽形成,花芽多而饱满,使次年 硕果累累,形成了大年。这样周而复始,使产量很不稳定。生产上常通过修剪及采用生长调 节剂进行疏花、疏果,调节营养生长和生殖生长的矛盾,使之得到统一,以确保年年丰收。

25.简述生长素的生理效应。①促进生长,存在双重效应,阐述。(3分)②对养分有调运效应,阐述。(2分)③诱导插枝不定根的形成,说明。(2分)④其他效应(2分)

26.试述光对植物生长的影响。影响是多方面的,主要有下列几方面:①光是光合作用的能源和启动者,为植物的生长提供能源;(2分)②光控制植物的形态建成,即叶的伸展扩大,茎的高矮,分枝的多少、长度、根冠比等都与光照强弱和光质有关;(2分)③日照时数影响植物生长与休眠。绝大多数多年生植物都是长日照条件促进生长、短日照条件诱导休眠;(2分)④光影响种子萌发,需光种子的萌发受光照的促进,而需暗种子的萌发则受光抑制。(2分)此外,一些豆科植物叶片的昼开夜合,气孔运动等都受光的调节。(1分)

27.光周期理论在生产实践中有哪些应用?

(1)引种和育种不同纬度地区引种时要考虑品种的光周期特性和引种地生长季节的日照条件,否则,可能使植物过

早或过迟开花而造成减产,甚至颗粒无收。如南方大豆是短日植物,南种北引,开花期延迟,所以引种要引早熟种。(2分)

通过人工光周期诱导,可以加速良种繁育,缩短育种年限。如:短日植物水稻和玉米可在海南省加快繁育种子;长日植

物小麦夏季在黑龙江、冬季在云南种植,可以满足作物发育对光照和温度的要求,一年内可繁殖2~3代,从而加速育种进程。(2分)

杂交育种中,可以通过延长或缩短日照长度,来控制花期,以解决父母本花期不遇的问题。如对晚稻进行遮光处理就能

使其与早稻同时开花,使早、晚稻杂交成为可能。(1分)

(2)控制花期花卉栽培中,光周期的人工控制可以促进或延迟开花。菊花是短日植物,经短日处理可以从10月份提

前到6至7月间开花。(2分)

(3)调节营养生长和生殖生长对以收获营养体为主的作物,可以通过控制光周期抑制其开花。如将短日植物烟草引

种至温带,可提前至春季播种,促进营养生长,提高烟叶产量。(2分)

植物的衰老有何生物学意义?衰老时有哪些生理生化变化?

不应单纯地将衰老看成是导致植物死亡的消极过程,它仍具有重要的生物学意义。(1)

一、二年生植物在开花结实后,整株植物将衰老死亡,但它在衰老死亡之前已将体内营养物质运往种子,对种的繁衍有利。(2分)

(2)多年生木本植物,在冬季叶片的衰老脱落可以最大限度地减少蒸腾作用,保持体内水分平衡,同时在落叶之前,也

已将营养物转移到茎中贮藏,以供来年发芽之用。(2分)

(3)果实的成熟衰老,有利于靠动物传播种子,便于种的保存和繁衍(2分)

衰老的外部表现为生长速率下降,器官颜色变化(叶、果变黄),死亡脱落,其实在有外部变化之前,体内早已有了生理

生化变化,包括:

①光合速率降低(1分)

②蛋白质、核酸等含量下降(1分)

③细胞结构破坏,如叶绿体、线粒体、内质网及质膜等相继破坏,解体。(1分)

28.植物抗旱的生理基础表现在哪些方面?如何提高植物植物抗旱性?

植物抗旱在形态结构方面有许多特点,如根系发达,根冠比大,维管束发达,叶脉致密,单位面积气孔数目多等。(2分)生理基础主要表现在如下方面:

(1)保持细胞有很高的亲水能力,防止细胞严重脱水,这是生理性抗旱的基础;(1分)

(2)脯氨酸积累,脱落酸增多,可引起气孔关闭,调节水分平衡;(1分)

(3)生育期的影响,植物在水分临界期抗旱力最弱,而其它时期抗旱力较强。(1分)提高抗旱的途径很多,主要是:①

选育抗旱品种是一条重要途径;(1分)

②进行抗旱锻炼,如“蹲苗”、“搁苗”、“饿苗”“双芽法”等;(1分)

③化学诱导;(1分)

④增施磷、钾肥;(1分)

肉质果实成熟期间在生理生化上的变化。(1)呼吸变化:多数果实如苹果等,在完熟过程中,出现呼吸跃变现象;另外一些果实如葡萄等,无呼吸跃变出现(4分)。(2)物质转化:A.色泽变化;B香气变化;C.甜度和酸度变化;D.涩味的变化;E.果实软化等(4分)。

30.气孔运动机理的两种假说:

气孔运动的机理

气孔运动是由保卫细胞水势的变化而引起的。

⒈蔗糖-淀粉假说

由植物生理学家F.E.Lloyd在1908年提出认为气孔运动是由于保卫细胞中蔗糖和淀粉间的相互转化而引起渗透势改变而造成的。

保卫细胞的叶绿体中有淀粉粒,淀粉是不溶性的大分子多聚体,水解为可溶性糖后,保卫细胞的渗透势降低,水进入细胞,膨压增加,气孔张开;反之,合成淀粉时蔗糖含量减少,渗透势上升,水离开保卫细胞,膨压降低,气孔关闭。

蔗糖-淀粉假说曾被广泛接受,但后来由于钾离子作用的发现使得这一假说被忽视。最近的研究表明蔗糖和淀粉间的相互转化在调节气孔运动中的某些阶段起着一定的作用

⒉无机离子泵学说,又称 K+泵假说、钾离子学说

日本学者于1967年发现,照光时,K+从周围细胞进入保卫细胞,保卫细胞中K+浓度增加,溶质势降低,吸水,气孔张开;暗中则相反,K+由保卫细胞进入表皮细胞,保卫细胞水势升高,失水,气孔关闭。

光下保卫细胞逆着浓度梯度积累K+,使K+达到0.5mol·L-1,溶质势可降低2MPa左右。

保卫细胞质膜上存在着H+-ATP酶,它可被光激活,能水解细胞中的ATP,产生的能量将H+从保卫细胞分泌到周围细胞中,建立起H+电化学势梯度。它驱动K+从周围细胞经过位于保卫细胞质膜上的内向K+通道进入保卫细胞(在H+/K+泵的驱使下),H+与K+交换K+浓度增加,水势降低,水分进入,气孔张开。

3.苹果酸代谢学说(malate metabolism theory)

20世纪70年代初以来发现苹果酸在气孔开闭运动中起着某种作用。

光照下, 保卫细胞内的部分CO2被利用时,pH上升至8.0~8.5,从而活化了PEP(磷酸烯醇式丙酮酸)羧化酶,它可催化由淀粉降解产生的PEP与HCO3-结合成草酰乙酸,并进一步被NADPH还原为苹果酸。

PEP+HCO3-PEP羧化酶草酰乙酸+磷酸

草酰乙酸+NADPH(NADH)苹果酸还原酶 苹果酸+NAPD+(NAD+)

苹果酸的存在可降低水势,促使保卫细胞吸水,气孔张开。同时,苹果酸被解离为2H+和苹果酸根;苹果酸根进入液泡和Cl-共同与K+在电学上保持平衡。当叶片由光下转入暗处时,该过程逆转。

总之,气孔运动是由保卫细胞水势的变化而引起的。

GA促进植物生长,包括促进细胞分裂和细胞扩大两个方面。并使细胞周期缩短30%左右。GA可促进细胞扩大,其作用机理与生长素有所不同,GA不引起细胞壁酸化,GA可使细胞壁里钙离子移入细胞质中,胞质中的钙离子浓度升高,钙离子与钙调素结合使之活化,激活的钙调素作用于细胞核的DNA,使之形成mRNA,mRNA与胞质中的核糖体结合,形成新的蛋白质,从而使细胞伸长。

生长素的极性运输机理可用Goldsmith 提出的化学渗透极性扩散假说去解释。这个学说的要点是:植物形态学上端的细胞的基部有IAA-输出载体,细胞中的IAA-首先由输出载体载体到细胞壁,IAA与H+ 结合成IAAH,IAAH再通过下一个细胞的顶部扩散透过质膜进入细胞,或通过IAA-—H+共向转运体运入细胞质。如此重复下去,即形成了极性运输。

33.为什么光有抑制茎伸长的作用?光抑制茎伸长的原因有:1)光照使自由IAA转变为无活性的结合态IAA。2)光照提高IAA氧化酶活性,IAA含量下降。与此同时,光照也会促进堇菜黄素分解形成生长抑制物。3)红光增加细胞质钙离子浓度,活化CaM,分泌钙离子到细胞壁,细胞延长减慢。

34.如何使菊花提前在6~7月份开花?又如何使菊花延迟开花?菊花是短日照植物,原在秋季(10月)开花,可用人工进行遮光处理,使花在6~7月份也处于短日照,从而诱导菊花提前在6~7月份开花。如果延长光照或晚上闪光使暗间断,则可使花期延后。

35.植物的成花诱导有哪些途径?植物的成花诱导有4条途径。一是光周期途径。光敏色素和隐花色素参与这个途径。二是自主/春化途径。三是糖类途径。四是赤霉素途径。上述4条途径集中增加关键花分生组织决定基因AGL20的表达

采收后的甜玉米,其甜度越来越低,这是因为采后的甜玉米细胞中的淀粉磷酸化酶活性加大,迅速地将可溶性糖转化为淀粉,所以它的甜度越来越低。实验表明,采后的甜玉米,在30℃条件下,1d内就有60010的可溶性糖转化为淀粉。

37.干旱时,植物体内脯氨酸含量大量增加的原因及生理意义是什么?在干旱条件下,Pro含量增加的原因有:(1)蛋白质分解的产物;(2)Pro合成活性受激;(3)Pro氧化作用减弱。Pro含量增加的生理意义如下:(1)防止游离NH3的积累;以Pro作为贮NH3的-种形式,以免造成植物氨中毒;(2)Pro具有较大的吸湿性,在干旱时可增加细胞的束缚水(B.W.)含量,有利于抗旱。

38.植物细胞的胞间连丝有哪些功能?

答:植物细胞胞间连丝的主要生理功能有两方面:一是进行物质交换,相邻细胞的原生质可通过胞间连丝进行交换,使可溶性物质(如电解质和小分子有机物)、生物大分子物质(如蛋白质、核酸、蛋白核酸复合物)甚至细胞核发生胞间运输。二是进行信号传递,物理信号(电、压力)和化学信号(生长调节剂)都可通过胞间连丝进行共质体传递。

第二篇:植物生理学总结

植物的光合作用受内外因素的影响,而衡量内外因素对光合作用影响程度的常用指标是光合速率(photosynthetic rate)。

一、光合速率及表示单位

光合速率通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。常用单位有:μmol CO2·m-2·s-1(以前用mg·dm-2·h-1表示,1μmol·m-2·s-1=1.58mg·dm-2·h-1)、μmol O2·dm-2·h-1 和mgDW(干重)·dm-2·h-1。CO2吸收量用红外线CO2气体分析仪测定,O2释放量用氧电极测氧装置测定,干物质积累量可用改良半叶法等方法测定(请参照植物生理实验指导书)。有的测定光合速率的方法都没有把呼吸作用(光、暗呼吸)以及呼吸释放的CO2被光合作用再固定等因素考虑在内,因而所测结果实际上是表观光合速率(apparent photosynthetic rate)或净光合速率(net photosynthetic rate,Pn),如把表观光合速率加上光、暗呼吸速率,便得到总光合速率(gross photosyntheticrate)或真光合速率(true photosynthetic rate)。

二、内部因素

(一)叶片的发育和结构

1.叶龄 新长出的嫩叶,光合速率很低。其主要原因有:(1)叶组织发育未健全,气孔尚未完全形成或开度小,细胞间隙小,叶肉细胞与外界气体交换速率低;(2)叶绿体小,片层结构不发达,光合色素含量低,捕光能力弱;(3)光合酶,尤其是Rubisco的含量与活性低。(4)幼叶的呼吸作用旺盛,因而使表观光合速率降低。但随着幼叶的成长,叶绿体的发育,叶绿素含量与Rubisco酶活性的增加,光合速率不断上升;当叶片长至面积和厚度最大时,光合速率通常也达到最大值,以后,随着叶片衰老,叶绿素含量与Rubisco酶活性下降,以及叶绿体内部结构的解体,光合速率下降。

依据光合速率随叶龄增长出现“低—高—低”的规律,可推测不同部位叶片在不同生育期的相对光合速率的大小。如处在营养生长期的禾谷类作物,其心叶的光合速率较低,倒3叶的光合速率往往最高;而在结实期,叶片的光合速率应自上而下地衰减。

2.叶的结构 叶的结构如叶厚度、栅栏组织与海绵组织的比例、叶绿体和类囊体的数目等都对光合速率有影响。叶的结构一方面受遗传因素控制,另一方面还受环境影响。

C4植物的叶片光合速率通常要大于C3植物,这与C4植物叶片具有花环结构等特性有关。许多植物的叶组织中有两种叶肉细胞,靠腹面的为栅栏组织细胞;靠背面的为海绵组织细胞。栅栏组织细胞细长,排列紧密,叶绿体密度大,叶绿素含量高,致使叶的腹面呈深绿色,且其中Chla/b比值高,光合活性也高,而海绵组织中情况则相反。生长在光照条件下的阳生植物(sun plant)叶栅栏组织要比阴生植物(shade plant)叶发达,叶绿体的光合特性好,因而阳生叶有较高的光合速率。

同一叶片,不同部位上测得的光合速率往往不一致。例如,禾本科作物叶尖的光合速率比叶的中下部低,这是因为叶尖部较薄,且易早衰的缘故。

(二)光合产物的输出

光合产物(蔗糖)从叶片中输出的速率会影响叶片的光合速率。例如,摘去花、果、顶芽等都会暂时阻碍光合产物输出,降低叶片特别是邻近叶的光合速率;反之,摘除其他叶片,只留一张叶片与所有花果,留下叶的光合速率会急剧增加,但易早衰。对苹果等果树枝条环割,由于光合产物不能外运,会使环割上方枝条上的叶片光合速率明显下降。光合产物积累到一定的水平后会影响光合速率的原因有:(1)反馈抑制。例如蔗糖的积累会反馈抑制合成蔗糖的磷酸蔗糖合成酶sucrose phosphate synthetase,SPS)的活性,使F6P增加。而F6P的积累,又反馈抑制果糖1,6-二磷酸酯酶活性,使细胞质以及叶绿体中磷酸丙糖含量增加,从而影响CO2的固定;(2)淀粉粒的影响。叶肉细胞中蔗糖的积累会促进叶绿体基质中淀粉的合成与淀粉粒的形成,过多的淀粉粒一方面会压迫与损伤类囊体,另一方面,由于淀粉粒对光有遮挡,从而直接阻碍光合膜对光的吸收。

三 外部因素

(一)光照

光是光合作用的动力,也是形成叶绿素、叶绿体以及正常叶片的必要条件,光还显著地调节光合酶的活性与气孔的开度,因此光直接制约着光合速率的高低。光照因素中有光强、光质与光照时间,这些对光合作用都有深刻的影响。

1.光强

(1)光强-光合曲线 图4-26是光强-光合速率关系的模式图。

图4-26 光强-光合曲线图解

图4-27 不同植物的光强光合曲线

暗中叶片不进行光合作用,只有呼吸作用释放CO2(图4-26中的OD为呼吸速率)。随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于CO2释放量,表观光合速率为零,这时的光强称为光补偿点(light compensation point)。在低光强区,光合速率随光强的增强而呈比例地增加(比例阶段,直线A);当超过一定光强,光合速率增加就会转慢(曲线B);当达到某一光强时,光合速率就不再增加,而呈现光饱和现象。开始达到光合速率最大值时的光强称为光饱和点(light saturation point),此点以后的阶段称饱和阶段(直线C)。比例阶段中主要是光强制约着光合速率,而饱和阶段中CO2扩散和固定速率是主要限制因素。用比例阶段的光强-光合曲线的斜率(表观光合速率/光强)可计算表观光合量子产额。

由图4-27,表4-5可见,不同植物的光强-光合曲线不同,光补偿点和光饱和点也有很大的差异。光补偿点高的植物一般光饱和点也高,草本植物的光补偿点与光饱和点通常要高于木本植物;阳生植物的光补偿点与光饱和点要高于阴生植物;C4植物的光饱和点要高于C3植物。光补偿点和光饱和点可以作为植物需光特性的主要指标,用来衡量需光量。光补偿点低的植物较耐阴,如大豆的光补偿点仅0.5klx,所以可与玉米间作,在玉米行中仍能正常生长。在光补偿点时,光合积累与呼吸消耗相抵消,如考虑到夜间的呼吸消耗,则光合产物还有亏空,因此从全天来看,植物所需的最低光强必须高于光补偿点。对群体来说,上层叶片接受到的光强往往会超过光饱和点,而中下层叶片的光强仍处在光饱和点以下,如水稻单株叶片光饱和点为40~50klx,而群体内则为60~80lx,因此改善中下层叶片光照,力求让中下层叶片接受更多的光照是高产的重要条件。

植物的光补偿点和光饱和点不是固定数值,它们会随外界条件的变化而变动,例如,当CO2浓度增高或温度降低时,光补偿点降低;而当CO2浓度提高时,光饱和点则会升高。在封闭的温室中,温度较高,CO2较少,这会使光补偿点提高而对光合积累不利。在这种情况下应适当降低室温,通风换气,或增施CO2才能保证光合作用的顺利进行。

在一般光强下,C4植物不出现光饱和现象,其原因是:①C4植物同化CO2消耗的同化力要比C3植物高 ②PEPC对CO2的亲和力高,以及具有“CO2泵”,所以空气中CO2浓度通常不成为C4植物光合作用的限制因素。

(2)强光伤害—光抑制 光能不足可成为光合作用的限制因素,光能过剩也会对光合作用产生不利的影响。当光合机构接受的光能超过它所能利用的量时,光会引起光合速率的降低,这个现象就叫光合作用的光抑制(photoinhibition of photosynthesis)。

晴天中午的光强常超过植物的光饱和点,很多C3植物,如水稻、小麦、棉花、大豆、毛竹、茶花等都会出现光抑制,轻者使植物光合速率暂时降低,重者叶片变黄,光合活性丧失。当强光与高温、低温、干旱等其他环境胁迫同时存在时,光抑制现象尤为严重。通常光饱和点低的阴生植物更易受到光抑制危害,若把人参苗移到露地栽培,在直射光下,叶片很快失绿,并出现红褐色灼伤斑,使参苗不能正常生长;大田作物由光抑制而降低的产量可达15%以上。因此光抑制产生的原因及其防御系统引起了人们的重视。

光抑制机理 一般认为光抑制主要发生在PSⅡ。按其发生的原初部位可分为受体侧光抑制和供体侧光抑制。受体侧光抑制常起始于还原

1型QA的积累。还原型QA的积累促使三线态P680(P680T)的形成,而P680T可以与氧作用(P680T +O2→P680 + 1O2)形成单线态氧(O2);供体侧光抑制起始于水氧化受阻。由于放氧复合体不能很快把电子传递给反应中心,从而延长了氧化型P680(P680+)的存在时间。P680+和1O2都是强氧化剂,如不及时消除,它们都可以氧化破坏附近的叶绿素和D1蛋白,从而使光合器官损伤,光合活性下降。

保护机理 植物有多种保护防御机理,用以避免或减少光抑制的破坏。如:(1)通过叶片运动,叶绿体运动或叶表面覆盖蜡质层、积累盐或着生毛等来减少对光的吸收;(2)通过增加光合电子传递和光合关键酶的含量及活化程度,提高光合能力等来增加对光能的利用;(3)加强非光合的耗能代谢过程,如光呼吸、Mehler反应等;(4)加强热耗散过程,如蒸腾作用;(5)增加活性氧的清除系统,如超氧物歧化酶(SOD)、谷胱甘肽还原酶等的量和活性;(6)加强PSⅡ的修复循环等。

光抑制引起的破坏与自身的修复过程是同时发生的,两个相反过程的相对速率决定光抑制程度和对光抑制的忍耐性。光合机构的修复需要弱光和合适的温度,以及维持适度的光合速率,并涉及到一些物质如D1等蛋白的合成。如果植物连续在强光和高温下生长,那么光抑制对光合器的损伤就难以修复了。

图4-28 不同光波下植物的光合速率

在作物生产上,保证作物生长良好,使叶片的光合速率维持较高的水平,加强对光能的利用,这是减轻光抑制的前提。同时采取各种措施,尽量避免强光下多种胁迫的同时发生,这对减轻或避免光抑制损失也是很重要的。另外,强光下在作物上方用塑料薄膜遮阳网或防虫网等遮光,能有效防止光抑制的发生,这在蔬菜花卉栽培中已普遍应用。

2.光质 在太阳幅射中,只有可见光部分才能被光合作用利用。用不同波长的可见光照射植物叶片,测定到的光合速率(按量子产额比较)不一样(图4-28)。在600~680nm红光区,光合速率有一大的峰值,在435nm左右的蓝光区又有一小的峰值。可见,光合作用的作用光谱与叶绿体色素的吸收光谱大体吻合。

在自然条件下,植物或多或少会受到不同波长的光线照射。例如,阴天不仅光强减弱,而且蓝光和绿光所占的比例增高。树木的叶片吸收红光和蓝光较多,故透过树冠的光线中绿光较多,由于绿光是光合作用的低效光,因而会使树冠下生长的本来就光照不足的植物利用光能的效率更低。“大树底下无丰草”就是这个道理。

水层同样改变光强和光质。水层越深,光照越弱,例如,20米深处的光强是水面光强的二十分之一,如水质不好,深处的光强会更弱。水层对光波中的红、橙部分吸收显著多于蓝、绿部分,深水层的光线中短波长的光相对较多。所以含有叶绿素、吸收红光较多的绿藻分布于海水的表层;而含有藻红蛋白、吸收绿、蓝光较多的红藻则分布在海水的深层,这是海藻对光适应的一种表现。

3.光照时间 对放置于暗中一段时间的材料(叶片或细胞)照光,起初光合速率很低或为负值,要光照一段时间后,光合速率才逐渐上升并趋与稳定。从照光开始至光合速率达到稳定水平的这段时间,称为“光合滞后期”(lag phase of photosynthesis)或称光合诱导期。一般整体叶片的光合滞后期约30~60min,而排除气孔影响的去表皮叶片,细胞、原生质体等光合组织的滞后期约10min。将植物从弱光下移至强光下,也有类似情况出现。另外,植物的光呼吸也有滞后现象。在光合的滞后期中光呼吸速率与光合速率会按比例上升(图4-29)。

产生滞后期的原因是光对酶活性的诱导以及光合碳循环中间产物的增生需要一个准备过程,而光诱导气孔开启所需时间则是叶片滞后期延长的主要因素。

由于照光时间的长短对植物叶片的光合速率影响很大,因此在测定光合速率时要让叶片充分预照光。

图4-30 叶片光合速率对细胞间隙 CO2浓度响应示意图

曲线上四个点对应浓度分别为CO2补偿点(C),空气浓度下细胞间隙的CO2浓度(n),与空气浓度相同的细胞间隙CO2浓度(350μl·L-1左右)和CO2饱和点(S)。Pm为最大光合速率;CE为比例阶段曲线斜率,代表羧化效率;OA光下叶片向无CO2气体中的释放速率,可代表光呼吸速率。

(二)CO2

1.CO2-光合曲线 CO2-光合曲线(图4-30)与光强光合曲线相似,有比例阶段与饱和阶段。光下CO2浓度为零时叶片只有光、暗呼吸,释放CO2。图中的OA部分为光下叶片向无CO2气体中的CO2释放速率(实质上是光呼吸、暗呼吸、光合三者的平衡值),通常用它来代表光呼吸速率。在比例阶段,光合速率随CO2浓度增高而增加,当光合速率与呼吸速率相等时,环境中的CO2浓度即为CO2补偿点(CO2 compensation point,图中C点);当达到某一浓度(S)时,光合速率便达最大值(PM),开始达到光合最大速率时的CO2浓度被称为CO2饱和点(CO2 saturation point)。在CO2-光合曲线的比例阶段,CO2浓度是光合作用的限制因素,直线的斜率(CE)受Rubisco活性及活化Rubisco量的限制,因而CE被称为羧化效率(carboxylation efficiency)。从CE的变化可以推测Rubisco的量和活性,CE大,即在较低的CO2浓度时就有较高的光合速率,也就是说Rubisco的羧化效率高。在饱和阶段,CO2已不是光合作用的限制因素,而CO2受体的量,即RuBP的再生速率则成为影响光合的因素。由于RuBP再生受ATP供应的影响,所以饱和阶段光合速率反映了光合电子传递和光合磷酸化活性,因而Pm被称为光合能力。

图4-31 C3植物与C4植物的CO2光合曲线比较

A.光合速率与外界CO2浓度; B.光合速率与细胞间隙CO2浓度(计算值);C4植物为Tidestromia oblogifolia; C3 植物为Larrea paricata

比较C3植物与C4植物CO2-光合曲线(图4-31),可以看出:(1)C4植物的CO2补偿点低,在低CO2浓度下光合速率的增加比C3快,CO2的利用率高;(2)C2植物的CO2饱和点比C3植物低,在大气CO2浓度下就能达到饱和;而C3植物CO2饱和点不明显,光合速率在较高CO2浓度下还会随浓度上升而提高。C4植物CO2饱和点低的原因,可能与C4植物的气孔对CO2浓度敏感有关,即CO2浓度超过空气水平后,C4植物气孔开度就变小。另外,C4植物PEPC的Km低,对CO2亲和力高,有浓缩CO2机制,这些也是C4植物CO2饱和点低的原因。

在正常生理情况下,植物CO2补偿点相对稳定,例如小麦100个品种的CO2补偿点为52±2μl·L-1,大麦125个品种为55±2μl·L-1,玉米125个品种为1.3±1.2μl·L-1,猪毛菜(CAM植物)CO2补偿点不超过10μl·L-1。有人测定了数千株燕麦和5万株小麦的幼苗,尚未发现一株具有类似C4植物低CO2补偿点的幼苗。在温度上升、光强减弱、水分亏缺、氧浓度增加等条件下,CO2补偿点也随之上升。

2.CO2供给 CO2是光合作用的碳源,陆生植物所需的CO2主要从大气中获得。CO2从大气至叶肉细胞间隙为气相扩散,而从叶肉细胞间隙到叶绿体基质则为液相扩散,扩散的动力为.CO2浓度差。

图 4-32 不同 CO2浓度下温度对光合速率的影响

a.在饱和CO2浓度下;b.在大气.CO2浓度下(Berty and Bojorkman 1980)

空气中的.CO2浓度较低,约为350μl·L-1(0.035%),分压为3.5×10-5 MPa,而一般C3植物的.CO2饱和点为1 000~1 500μl·L-1 左右,是空气中的3~5倍。在不通风的温室、大棚和光合作用旺盛的作物冠层内的.CO2浓度可降至200μl·L-1左右。由于光合作用 对.CO2的消耗以及存在.CO2扩散阻力,因而叶绿体基质中的.CO2浓度很低,接近.CO2补偿点。因此,加强通风或设法增施.CO2能显著提高作物的光合速率,这对C3植物尤为明显。

(三)温度

光合过程中的暗反应是由酶所催化的化学反应,因而受温度影响。在强光、高.CO2浓度时温度对光合速率的影响要比弱光、低.CO2浓度时影响大(图4-32),这是由于在强光和高.CO2条件下,温度能成为光合作用的主要限制因素。

光合作用有一定的温度范围和三基点。光合作用的最低温度(冷限)和最高温度(热限)是指该温度下表观光合速率为零,而能使光合速率达到最高的温度被称为光合最适温度。光合作用的温度三基点因植物种类不同而有很大的差异(表4-6)。如耐低温的莴苣在5℃就能明显地测出光合速率,而喜温的黄瓜则要到20℃时才能测到;耐寒植物的光合作用冷限与细胞结冰温度相近;而起源于热带的植物,如玉米、高粱、橡胶树等在温度降至10~5℃时,光合作用已受到抑制。低温抑制光合的原因主要是低温时膜脂呈凝胶相,叶绿体超微结构受到破坏。此外,低温时酶促反应缓慢,气孔开闭失调,这些也是光合受抑的原因。

从表4-6可知,C4植物的热限较高,可达50~60℃,而C3植物较低,一般在40~50℃。乳熟期小麦遇到持续高温,尽管外表上仍呈绿色,但光合功能已严重受损。产生光合作用热限的原因:一是由于膜脂与酶蛋白的热变性,使光合器官损伤,叶绿体中的酶钝化;二是由于高温刺激了光暗呼吸,使表观光合速率迅速下降。

昼夜温差对光合净同化率有很大的影响。白天温度高,日光充足,有利于光合作用的进行;夜间温度较低,降低了呼吸消耗,因此,在一定温度范围内,昼夜温差大有利于光合积累。

在农业实践中要注意控制环境温度,避免高温与低温对光合作用的不利影响。玻璃温室与塑料大棚具有保温与增温效应,能提高光合生产力,这已被普遍应用于冬春季的蔬菜栽培。

(四)水分

水分对光合作用的影响有直接的也有间接的原因。直接的原因是水为光合作用的原料,没有水不能进行光合作用。但是用于光合作用的水不到蒸腾失水的1%,因此缺水影响光合作用主要是间接的原因。

水分亏缺会使光合速率下降。在水分轻度亏缺时,供水后尚能使光合能力恢复,倘若水分亏缺严重,供水后叶片水势虽可恢复至原来水平,但光合速率却难以恢复至原有程度(图4-33)。因而在水稻烤田,棉花、花生蹲苗时,要控制烤田或蹲苗程度,不能过头。

图4-33 向日葵在严重水分亏缺时以及在复水过程中 叶水势、光合速率、气孔阻力、蒸腾速率变化

水分亏缺降低光合的主要原因有:

(1)气孔导度下降 叶片光合速率与气孔导度呈正相关,当水分亏缺时,叶片中脱落酸量增加,从而引起气孔关闭,导度下降,进入叶片的.CO2减少。开始引起气孔导度和光合速率下降的叶片水势值,因植物种类不同有较大差异:水稻为-0.2~-0.3MPa;玉米为-0.3~-0.4MPa;而大豆和向日葵则在-0.6~-1.2MPa间。

(2)光合产物输出变慢 水分亏缺会使光合产物输出变慢,加之缺水时,叶片中淀粉水解加强,糖类积累,结果会引起光合速率下降。

(3)光合机构受损 缺水时叶绿体的电子传递速率降低且与光合磷酸化解偶联,影响同化力的形成。严重缺水还会使叶绿体变形,片层结构破坏,这些不仅使光合速率下降,而且使光合能力不能恢复。

(4)光合面积扩展受抑 在缺水条件下,生长受抑,叶面积扩展受到限制。有的叶面被盐结晶、被绒毛或蜡质覆盖,这样虽然减少了水分的消耗,减少光抑制,但同时也因对光的吸收减少而使得光合速率降低。

水分过多也会影响光合作用。土壤水分太多,通气不良妨碍根系活动,从而间接影响光合;雨水淋在叶片上,一方面遮挡气孔,影响气体交换,另一方面使叶肉细胞处于低渗状态,这些都会使光合速率降低。

(五)矿质营养

矿质营养在光合作用中的功能极为广泛,归纳起来有以下几方面:

1.叶绿体结构的组成成分 如N、P、S、Mg是叶绿体中构成叶绿素、蛋白质、核酸以及片层膜不可缺少的成分。

2.电子传递体的重要成分 如PC中含Cu,Fe-S中心、Cytb、Cytf和Fd中都含Fe,放氧复合体不可缺少Mn2+ 和Cl-。

3.磷酸基团的重要作用 构成同化力的ATP和NADPH,光合碳还原循环中所有的中间产物,合成淀粉的前体ADPG,以及合成蔗糖的前体UDPG,这些化合物中都含有磷酸基团。

4.活化或调节因子 如Rubisco,FBPase等酶的活化需要Mg2+ ;Fe、Cu、Mn、Zn参与叶绿素的合成;K+ 和Ca2+ 调节气孔开闭;K和P促进光合产物的转化与运输等。

肥料三要素中以N对光合影响最为显著。在一定范围内,叶的含N量、叶绿素含量、Rubisco含量分别与光合速率呈正相关。叶片中含N量的80%在叶绿体中,施N既能增加叶绿素含量,加速光反应,又能增加光合酶的含量与活性,加快暗反应。从N素营养好的叶片中提取出的Rubisco不仅量多,而且活性高。然而也有试验指出当Rubisco含量超过一定值后,酶量就不与光合速率成比例。

重金属铊、镉、镍和铅等都对光合作用有害,它们大都影响气孔功能。另外,镉对PSⅡ活性有抑制作用。

(六)光合速率的日变化

一天中,外界的光强、温度、土壤和大气的水分状况、空气中的.CO2浓度以及植物体的水分与光合中间产物含量、气孔开度等都在不断地变化,这些变化会使光合速率发生日变化,其中光强日变化对光合速率日变化的影响最大。在温暖、水分供应充足的条件下,光合速率变化随光强日变化呈单峰曲线,即日出后光合速率逐渐提高,中午前达到高峰,以后逐渐降低,日落后光合速率趋于负值(呼吸速率)。如果白天云量变化不定,则光合速率会随光强的变化而变化。

图4-34 水稻光合速率的日变化

A.光合速率(P)和气孔导度(C)平行变化; B.由A图数据绘制的光合速率与光强的关系,在相同光强下,上午光合速率要大于下午的光合速率

另外,光合速率也同气孔导度的变化相对应(图4-34A)。在相同光强时,通常下午的光合速率要低于上午的光合速率(图4-34B),这是由于经上午光合后,叶片中的光合产物有积累而发生反馈抑制的缘故。当光照强烈、气温过高时,光合速率日变化呈双峰曲线,大峰在上午,小峰在下午,中午前后,光合速率下降,呈现“午睡”现象(midday depression of photo-synthesis),且这种现象随土壤含水量的降低而加剧(图4-35)。引起光合“午睡”的主要因素是大气干旱和土壤干旱。在干热的中午,叶片蒸腾失水加剧,如此时土壤水分也亏缺,那么植株的失水大于吸水,就会引起萎蔫与气孔导度降低,进而使 CO2吸收减少。另外,中午及午后的强光、高温、低.CO2浓度等条件都会使光呼吸激增,光抑制产生,这些也都会使光合速率在中午或午后降低。

光合“午睡”是植物遇干旱时的普遍发生现象,也是植物对环境缺水的一种适应方式。但是“午睡”造成的损失可达光合生产的30%,甚至更多,所以在生产上应适时灌溉,或选用抗旱品种,增强光合能力,以缓和“午睡”程度。

图 4-35 桑叶光合速率随着土壤水分减少的日变化

A.光合日变化; B.土壤含水量 图中数字为降雨后的天数(Tazaki等,1980)

第三篇:植物生理学小结

第一章

没有水,便没有生命,水分在植物生命活动中起着极大的作用。一般植物组织的含水量大约占鲜重的3/4.水分在植物体的进程可分为吸收、运输和蒸腾三个环节。

细胞吸水有3种方式:扩散、集流和渗透作用,其中以最后一种为主。大多数水分是经过水孔蛋白形成的通道进出细胞膜的。植物细胞是一个渗透系统,它的吸水决定于水势:水势=渗透势+压力势。细胞与细胞(或溶液)之间的水分移动方向,决定于两者的水势,水分从水势高处流向水势低处。

植物不仅吸水,而且不断失水,这是一个问题的两个不同方面。植物的水分生理就是在这样既矛盾又统一的状况下进行的。维持水分平衡是植物进行正常生命活动的关键。

植物失水方式有2种:吐水和蒸腾。蒸腾作用在植物生活中具有重要的作用。气孔是植物体与外界交换的“大门”,也是蒸腾的主要通道。气孔保卫细胞吸收各种离子和有机溶质并积累于液泡中,诱发气孔张开。现较受重视的气孔运动的机理有2种:钾离子的吸收和苹果酸生成。K⁺和苹果酸等进入保卫细胞的液泡,水势下降,吸水膨胀,气孔就开放。气孔蒸腾收到内外因素的影响。外界条件中以光照为最主要的,内部因素中以气孔调节为主。作物需水量依作物种类不同而定。同一作物不同生育期对水分的需要以生殖器官形成期和灌浆期最为敏感。灌溉的生理指标可客观和灵敏地反映植株水分状况,有助于人们确定灌溉时期。我国人均水资源贫乏,尤其是西北、华北地区,节水灌溉就是利用作物不同生育时期需水要求、水分胁迫条件下抗逆生理变化,在不影响产量前提下,节约水分,提高水分利用效率。

第二章

利用溶液培养发或砂基培养法,了解到植物生长发育必需的元素有从水分和CO₂取得的碳、氢、氧、等3种,有从土壤取得的大量元素为氮、磷、钾、硫、钙、镁、硅等7种,微量元素为铁、锰、硼、锌、铜、钼、钠、镍、和氯等9种。各种元素有各自功能,一般不能相互替代。植物缺乏某种必要元素时,会表现出一定缺乏病症。

植物细胞吸收溶质可分为被动运输和主动运输两种。细胞对矿质元素的吸收主要由膜转运蛋白质完成。膜转运蛋白质主要有通道蛋白、载体蛋白和离子泵3种,分别进行通道运输、载体运输和泵运输。通道运输主要由K⁺、Clˉ、Ca²⁺、NO₃⁻等离子通道,离子通道的运输是顺着跨膜的电化学势梯度进行的。载体运输包括单向运输载体、同向运输器和反向运输器,它们可以顺着或逆着跨膜的电化学势梯度运输溶质。泵运输有H⁺-ATP酶、CA²⁺-ATP酶、H⁺-焦磷酸酶3种类型。它们都要依赖于ATP或焦磷酸中的自由能启动。细胞质中的溶质有些留存在细胞质中,有些运输到液泡,起贮藏和调节细胞内环境的作用。

虽然叶片可以吸收矿质元素,但根部才是植物吸收矿质元素的主要器官。根毛区是根尖吸收离子最活跃的区域。根部吸收矿物质的过程是:首先进过交换吸附把离子吸附在表皮细胞表面;然后通过质外体和共质体运输进入皮层内部。对离子进入导管的方式有两种意见:一是被动扩散,二是主动过程。土壤温度和通气状况是影响根部吸收矿质元素的主要因素。

有一些矿质元素在根内的同化为有机物,但也有一些矿质元素仍呈离子状态。根部吸收的矿质元素向上运输主要通过木质部,也能横向运输到韧皮部后再向上运输。叶片吸收的离子在茎内向上或向下运输途径都是韧皮部,同样,也可横向运输到木质部继而上下运输。

矿质元素在植物体内的分布以离子是否参与循环而异。磷和氦等参与循环的矿质元素,多分布于代谢较旺盛的部分;钙和铁等不参与循环的矿质元素,则固定不动,器官越老,含量越多。

某些离子进入根部后,即进行一些同化作用。植物能直接利用铵盐的氮。当吸收硝酸盐后,要经过硝酸还原酶催化成亚硝酸,再经过亚硝酸还原酶吧亚硝酸还原成为铵,才能被利用。游离氨的量稍多,即毒害植物。植物体通过各种途径把氨同化为氨基酸或酰胺。高等植物不能利用游离氨,靠借固氮微生物固氮

植物生理学问答题

第一篇:植物生理学问答题 答:植物的成花包括三个阶段: (1)成花诱导,经某种环境信号刺激诱导,植物改变发育进程,从营养...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部