电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

初中数学几何证明题作辅助线的技巧

栏目:合同范文发布:2025-01-29浏览:1收藏

初中数学几何证明题作辅助线的技巧

第一篇:初中数学几何证明题作辅助线的技巧

人说几何很困难,难点就在辅助线。初中数学几何证明题辅助线怎么画?

辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。

斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;

底角倍半角分线,有时也作处长线;

公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠; 中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。

第二篇:辅助线几何证明题

辅助线的几何证明题

三角形辅助线做法

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。

常见的辅助线做法

1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。

6、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。

一、倍长中线(线段)造全等

(一)例题讲解

1、(“希望杯”试题)已知,如图ABC中,AB5,AC3,求中线AD的取值范围。分析:本题的关键是如何把AB,AC,AD三条线段转化到同一个三角形当中。解:延长AD到E,使DEDA,连接BE

又∵BDCD,BDECDA

∴BDECDASAS,BEAC3

∵ABBEAEABBE(三角形三边关系定理)

即22AD8

∴1AD4

经验总结:见中线,延长加倍。

E B D C A

第三篇:初中数学几何证明题

初中数学几何证明题

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。

一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可龋我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

第四篇:初中数学几何证明题

平面几何大题 几何是丰富的变换

多边形平面几何有两种基本入手方式:从边入手、从角入手

注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方式?

难题

第五篇:初中几何题作辅助线的方法和技巧

题中有角平分线,可向两边作垂线。线段垂直平分线,可向两端把线连。

三角形中两中点,连结则成中位线。三角形中有中线,延长中线同样长。

成比例,正相似,经常要作平行线。圆外若有一切线,切点圆心把线连。

如果两圆内外切,经过切点作切线。两圆相交于两点,一般作它公共弦。

是直径,成半圆,想做直角把线连。作等角,添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆

如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。

(1)两圆相交,常作公共弦,连心线.(2)两圆相切,常作公切线,连心线.(3)已知切线,常过切点作半径.(4)已知直径,常作直径所对的圆周角.(5)求解有关弦的问­题,作弦心距.(6)弧的中点常和圆心连结

初中数学几何证明题作辅助线的技巧

第一篇:初中数学几何证明题作辅助线的技巧 人说几何很困难,难点就在辅助线。初中数学几何证明题辅助线怎么画? 辅助线,如...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部