电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

几何证明题

栏目:合同范文发布:2025-01-29浏览:1收藏

几何证明题

第一篇:几何证明题

几何证明题集(七年级下册)

姓名:_________班级:_______

一、互补”。

E

D

二、证明下列各题:

1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D

3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD BCE3、如图,已知∠1+∠2=1800,求证:∠3=∠4.EC

A1 O

4B

D F4、如图,已知DF//AC,∠C=∠D,求证:∠AMB=∠ENF.E DF

N

M

AC B5、如图,在三角形ABC中,D、E、F分别为AB、AC、BC上的点且DE//BC、EF//AB,求证:∠ADE=∠EFC.C

EF

AB D6、如图,已知EC、FD与直A线AB交于C、D两点且∠1=∠2,1求证:CE//DF.CE

FD

2B7、如图,已知∠ABC=∠ADC,BF和DE分别是∠ABC和∠ADC的平分线,AB//CD,求证:DE//BF.FDC

A E8、如图,已知AC//DE,DC//EF,CD平分∠BCA,求证:EF平分∠BED.B

F

ED

AC9、如图,AB⊥BF,CD⊥BF, ∠A=∠C,求证: ∠AEB=∠F.CFBDE10、如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:DG//AB.A

EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.F

A

G

BCDE12、如图,∠1=∠2,∠3=∠4,∠B=∠5,求证:CE//DF.F

E 4G1AD 5 2B13、如图,AB//CD,求证:∠BCD=∠B+∠D.A

CBED14、如上图,已知∠BCD=∠B+∠D,求证:AB//CD.15、如图,AB//CD,求证:∠BCD=∠B-∠D.BA

ED

C16、如上图,已知∠BCD=∠B-∠D,求证:AB//CD.17、如图,AB//CD,求证:∠B+∠D+∠BED=3600.BA

E

DC18、如上图,已知∠B+∠D+∠BED=3600,求证:AB//CD.

第二篇:几何证明题(难)

附加题:

1、已知:如图,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ

2、已知:如图,在△ABC中,已知AB=AC,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点。求证:△ABE∽△ECM;

3、已知:如图,四边形ABCD,M为BC边的中点.∠B=∠AMD=∠C 求证:AM=DM

DA

BCM

4、如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,找出图中的三对相似三角形,并给予证明。

D

C

E

FG

A BP

5、已知:如图,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.

证明:把△ACF绕A点旋转90°使AC和AB重合;设F旋转之后的点是G

6、已知:如图,AB∥GH∥CD,求证:

111+= ABCDGH7、已知:点F是等边三角形ABC的边AC上一动点,(1)、如图,过点F的直线DE交线段AB于点D,交BC于点E,且CE=AD,求证:FD=FE A

DG F

CBE

(2)、如图,过点F的直线DE交BA的延长线于点D,交BC于点E,且CE=AD,求证:FD=FE

第三篇:几何证明题训练

仁家教育---您可以相信的品牌!

仁家教育教案

百川东到海,何时复西归?

少壮不努力,老大徒伤悲。

您的理解与支持是我们前进最大的动力!1

您的理解与支持是我们前进最大的动力!

您的理解与支持是我们前进最大的动力!

您的理解与支持是我们前进最大的动力!

您的理解与支持是我们前进最大的动力!

第四篇:高中数学几何证明题

新课标立体几何常考证明题汇总

1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点

(1)求证:EFGH是平行四边形

(2)若

BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。

C D H证明:在ABD中,∵E,H分别是AB,AD的中点∴EH//BD,EH同理,FG//BD,FG

(2)90°30 °

考点:证平行(利用三角形中位线),异面直线所成的角 1BD 21BD∴EH//FG,EHFG∴四边形EFGH是平行四边形。

22、如图,已知空间四边形ABCD中,BCAC,ADBD,E是AB的中点。求证:(1)AB平面CDE;

(2)平面CDE平面ABC。E BCAC证明:(1)CEAB AEBE

同理,ADBDDEAB AEBEB C 又∵CEDEE∴AB平面CDE

(2)由(1)有AB平面CDE

又∵AB平面ABC,∴平面CDE平面ABC

考点:线面垂直,面面垂直的判定

D3、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点,求证: AC1//平面BDE。

证明:连接AC交BD于O,连接EO,∵E为AA1的中点,O为AC的中点 ∴EO为三角形A1AC的中位线 ∴EO//AC1 又EO在平面BDE内,A1C在平面BDE外

∴AC1//平面BDE。考点:线面平行的判定

4、已知ABC中ACB90,SA面ABC,ADSC,求证:AD面SBC. 证明:∵ACB90°BCAC

又SA面ABCSABC

BC面SACBCAD

A

D

1B

C

D

C

S

A

C

B

又SCAD,SCBCCAD面SBC考点:线面垂直的判定

5、已知正方体ABCDA1B1C1D1,O是底ABCD对角线的交点.DAD

A

BBC

1面AB1D1.求证:(1)C1O∥面AB1D1;(2)AC1

证明:(1)连结A1C1,设

AC11B1D1O1,连结AO1

∵ ABCDA1B1C1D1是正方体A1ACC1是平行四边形

∴A1C1∥AC且 AC11AC又O1,O分别是AC11,AC的中点,∴O1C1∥AO且O1C1AO

C

AOC1O1是平行四边形

C1O∥AO1,AO1

面AB1D1,C1O面AB1D1∴C1O∥面AB1D1

(2)CC1面A1B1C1D1CC!1B1D又

∵AC11B1D1

同理可证

ACAD11,B1D1面A1C1C即A1CB 1D1,又

D1B1AD1D1

面AB1D1AC1

考点:线面平行的判定(利用平行四边形),线面垂直的判定

6、正方体ABCDA'B'C'D'中,求证:(1)AC平面B'D'DB;(2)BD'平面ACB'.考点:线面垂直的判定

7、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD. 证明:(1)由B1B∥DD1,得四边形BB1D1D是平行四边形,∴B1D1∥BD,又BD 平面B1D1C,B1D1平面B1D1C,∴BD∥平面B1D1C. 同理A1D∥平面B1D1C.

而A1D∩BD=D,∴平面A1BD∥平面B1CD.

A

(2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中点G,∴AE∥B1G.

从而得B1E∥AG,同理GF∥AD.∴AG∥DF.∴B1E∥DF.∴DF∥平面EB1D1.∴平面EB1D1∥平面FBD.

考点:线面平行的判定(利用平行四边形)

8、如图P是ABC所在平面外一点,PAPB,CB平面PAB,M是PC的中点,N是AB上的点,AN3NB

P

(1)求证:MNAB;(2)当APB90,AB2BC4时,求MN的长。证明:(1)取PA的中点Q,连结MQ,NQ,∵M是PB的中点,M∴MQ//BC,∵ CB平面PAB,∴MQ平面PAB∴QN是MN在平面PAB内的射影,取 AB的中点D,连结 PD,∵PAPB,∴CAPDAB,又AN3NB,∴BNND

N ∴QN//PD,∴QNAB,由三垂线定理得MNAB B

1

(2)∵APB90,PAPB,∴PDAB2,∴QN1,∵MQ平面PAB.∴MQNQ,且

MQBC

1,∴MN

2考点:三垂线定理

10、如图,在正方体ABCDA1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点.求证:平面D1EF∥平面BDG.证明:∵E、F分别是AB、AD的中点,EF∥BD 又EF平面BDG,BD平面BDGEF∥平面BDG ∵D

1G

EB四边形D1GBE为平行四边形,D1E∥GB

又D1E平面BDG,GB平面BDGD1E∥平面BDG

EFD1EE,平面D1EF∥平面BDG

考点:线面平行的判定(利用三角形中位线)

11、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点.(1)求证:AC1//平面BDE;(2)求证:平面A1AC平面BDE.证明:(1)设ACBDO,∵E、O分别是AA1、AC的中点,A1C∥EO

平面BDE,EO平面BDE,A1C∥平面BDE 又AC

1(2)∵AA1平面ABCD,BD平面ABCD,AA1BD 又BDAC,ACAA1A,BD平面A1AC,BD平面BDE,平面BDE平面A1AC

考点:线面平行的判定(利用三角形中位线),面面垂直的判定

12、已知ABCD是矩形,PA平面ABCD,AB2,PAAD4,E为BC的中点.

(1)求证:DE平面PAE;(2)求直线DP与平面PAE所成的角. 证明:在ADE中,ADAEDE,AEDE ∵PA平面ABCD,DE平面ABCD,PADE 又PAAEA,DE平面PAE(2)DPE为DP与平面PAE所成的角

在Rt

PAD,PDRt

DCE中,DE在RtDEP中,PD2DE,DPE30 考点:线面垂直的判定,构造直角三角形

13、如图,在四棱锥PABCD中,底面ABCD是DAB60且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.

(1)若G为AD的中点,求证:BG平面PAD;(2)求证:ADPB;

(3)求二面角ABCP的大小. 证明:(1)ABD为等边三角形且G为AD的中点,BGAD 又平面PAD平面ABCD,BG平面PAD

(2)PAD是等边三角形且G为AD的中点,ADPG 且ADBG,PGBGG,AD平面PBG,22

2PB平面PBG,ADPB

(3)由ADPB,AD∥BC,BCPB 又BGAD,AD∥BC,BGBC PBG为二面角ABCP的平面角

在RtPBG中,PGBG,PBG4

5考点:线面垂直的判定,构造直角三角形,面面垂直的性质定理,二面角的求法(定义法)

平面MBD.

14、如图1,在正方体ABCDA1B1C1D1中,M为CC1 的中点,AC交BD于点O,求证:AO

1证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,平面A1ACC1 ∴DB⊥A1O.∴DB⊥平面A1ACC1,而AO1

设正方体棱长为a,则AO1

3a,MO2a2. 2

4.在Rt△ACA1M211M中,9222

2OO

M∵AO,∴AMOA1Ma.11

∵OM∩DB=O,∴ A1O⊥平面MBD.

考点:线面垂直的判定,运用勾股定理寻求线线垂直 15、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.证明:取AB的中点F,连结CF,DF.∵ACBC,∴CFAB.

∵ADBD,∴DFAB.

又CFDFF,∴AB平面CDF.∵CD平面CDF,∴CDAB.又CDBE,BEABB,∴CD平面ABE,CDAH.

∵AHCD,AHBE,CDBEE,∴ AH平面BCD. 考点:线面垂直的判定

16、证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D

A

C

证明:连结AC

⊥AC∵BD∴ AC为A1C在平面AC上的射影

BDA1C

A1C平面BC1D

同理可证A1CBC1

考点:线面垂直的判定,三垂线定理

17、如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.

证明∵SB=SA=SC,∠ASB=∠ASC=60°∴AB=SA=AC取BC的中点O,连AO、SO,则AO⊥BC,SO⊥BC,∴∠AOS为二面角的平面角,设SA=SB=SC=a,又∠BSC=90°,∴BC=2a,SO=2a,11

AO2=AC2-OC2=a2-2a2=2a2,∴SA2=AO2+OS2,∴∠AOS=90°,从而平面ABC⊥平面BSC.

考点:面面垂直的判定(证二面角是直二面角)

第五篇:高中几何证明题

高中几何证明题

如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=1/2AB=1.(1)求证,D1E//平面ACB1

(2)求证,平面D1B1E垂直平面DCB1

证明:

1):连接AD1,AD1²=AD²+DD1²=B1C1²+C1E²=B1E²

所以AD1=B1E

同理可证AB1=D1E

所以四边形AB1ED1为平行四边形,AB1//A1E

因为AB1在平面ACB1上

所以D1E//平面ACB1

2):连接A1D,A1B1//CD,面A1B1CD与面CDB1为同一个平面

由(1)可知面D1B1E与面AD1B1E为同一平面

正方形ADD1A1的对角线AD1⊥A1D

在长方体ABCD-A1B1C1D1中,CD⊥面ADD1A1,所以CD⊥AD1

AD1与A1D相交,所以AD1⊥AB1ED1

所以面A1B1CD⊥AD1B1E

即:面D1B1E⊥面DCB1

我现在高二,以前老师教几何证明没学好,现在想亡羊补牢.但不知道这类型题应抓什么学,找什么记,哪些是基础,证明的步骤....只有多练,真的,几何证明题有很多固定的结题模式,但是参考书不会给你列出来,老师也不讲,你随便买一本几何专题的练习书来做,或者,如果你定力不好的话,可以去报一个补习班,专门补习几何专题的。

我从你想知道的这些知识觉得你有点急于求成,但是学好几何不是一天两天的事,其实高考的几何也不会很难的。

做得多,有了感觉,考试的时候自然得心应手,这是实话。

已知pA⊥平面ABCD,且四边形ABCD为矩形,M,N分别是AB,pC的中点.(1)证MN⊥CD.(2)若∠pDA=45度,求证MN⊥平面pCD

第一问,我证出来了.麻烦能讲下解这类题的思路

满意答案好评率:100%

对于这种空间几何题,用向量解决是一种通法,不知你学过没。但对于这一题,立体几何的知识足够解决了,记住面线垂直判定的方法,本质为证明线线垂直,找到平面内的两条相交直线与那条直线垂直,即可得证。此题(2)问,只要找pD和CD即可,注意∠pDA=45度这个条件即可证pD⊥MN。不懂追问。

继续追问:

∠pDA=45度这个条件即可证pD⊥MN?

补充回答:∠pDA=45度,可知△pAD为等腰直角△,取pD中点E,连接AE和AN,可以知道四边形AMNE为平行四边形,可知MN∥AE,而AE⊥pD(△pAD为等腰直角△,E为中点),则pD⊥MN。

几何证明题

第一篇:几何证明题 几何证明题集(七年级下册) 姓名:_________班级:_______ 一、互补”。 E D ...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部