电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

美国FDA清洗验证检查指南

栏目:合同范文发布:2025-01-28浏览:1收藏

美国FDA清洗验证检查指南

第一篇:美国FDA清洗验证检查指南

美国FDA清洗验证检查指南

Ⅰ.简介

对于清洗程序的验证的讨论,已经在FDA原料药检查指南和生物制品检查指南中有了简要地解释。这些官方文件明确表达了清洗验证的期望。

本指南通过讨论一些可接受(或不可接受)的实例来建立检查的连贯性和一致性。同时我们必须意识到清洗验证同其他过程的验证一样,都有不止一种的方法进行验证。最后验证证明,是否有科学数据表明系统确实如预期稳定,并满足预设规定的结果。

这个指南仅涉及对设备化学残留物的清洗。

Ⅱ.背景

FDA对于设备使用前的清洗没有什么新要求,1963GMP规范中(133.4部分)有以下陈述“设备***应保持清洁和有序的状态***”。在1978cGMP规范的设备清洁中有非常类似的章节。当然,设备清洗的主要目的是为了防止药品的污染和混淆。历史上,FDA检查员发现由于设备的清洗和维护的不充分及不良的灰尘控制系统带来总体上的不卫生。历史上来说,FDA更关注非青霉素类受青霉素类的污染和高活性的类固醇或激素对药物的交叉污染。过去的几十年里,许多产品由于实际存在或潜在的青霉素交叉污染而召回。

1998年消胆胺树脂USP制剂的召回事件使FDA对由于不充分的清洗程序造成的潜在交叉污染更为重视。产品生产中用到的化学原料药有低量的中间体和农业杀虫剂的降解物污染。那个事件中交叉污染被认为来自回收溶剂的套用过程。回收溶剂的污染是由于缺少对溶剂罐重复使用的控制。杀虫剂生产过程中存放回收溶剂的罐子随后用于存放树脂生产过程中的回收溶剂。公司对这些溶剂罐未严格管理,对存放的溶剂未充分检测,对罐子的清洗程序未验证。

杀虫剂污染了的原料药运到另一个地方提供给第二个工厂最后加工。这对后一个工厂流化床干燥器上用到的捕尘袋造成杀虫剂污染。这反过来导致在这里生产的多个批次交叉污染,而这里正常情况下没有杀虫剂生产。

FDA在1992年对外国原料药厂家发出进口警告,针对的是用普通设备生产高活性的类固醇和非类固醇类产品的厂家。这个公司是一个生产多种原料药的厂家。FDA考虑到潜在交叉污染的严重性,可能对公众造成严重的健康危害。这个公司仅仅在最近检查的时候开始清洗验证程序,而它被FDA认为是不合适的。认为他们做得不合适的理由之一是公司仅寻找无前期成份的化合物的证据。这个公司通过冲洗液的TLC测试证明存在反应副产物的残留和前面过程的降解物。

Ⅲ.常规要求

FDA专家希望公司有SOP来详细叙述设备不同部分的清洗过程。如果公司用一个清洗程序清

洗不同批次的同一产品,用不同程序清洗不同的产品,应在SOP中予以说明。同样的,如果公司有除去水溶性残留物的程序和除去非水溶性残留物的另一种程序,SOP中应强调说明使其在执行时明确。原料药厂可能采用特定设备用于一些特定的化学生产过程,这些化学过程能产生难以从设备上除去的焦油状或胶质的残留物。流化床干燥器的捕尘袋是设备的另一个例子,它们难以清洗并经常用于一种特定产品。清洁过程本身带来的任何残留物(洗涤剂,溶剂等)也必须从设备上除去。

FDA希望公司有一个总的关于如何进行清洗验证的书面计划。

总验证计划能明确谁负责执行和批准验证研究、可接受标准、再验证周期等。

FDA希望公司对每一个生产系统或设备预先准备专门的验证方案,以明确取样程序,运用的分析方法及其灵敏性等。

FDA希望公司按验证方案进行验证,并将验证结果进行归档。

FDA希望由经理批准的最终验证报告,阐明清洗程序是否有效。数据应能充分支持残留物减少到可接受水平的结论。

Ⅳ.清洗验证评价

第一步关注验证过程的客观性,我们发现一些公司难以做到这点。常见厂商按照清洗程序大范围的抽样和检测而没有真正地评价设备清洗步骤的有效性。在评价清洗程序时需要强调几个问题。例如,怎样才能说一台设备或系统是干净的?必须用手擦洗吗?手洗比仅用溶剂清洗在什么方面有效?批与批之间,产品与产品之间手工清洗有何区别?由于要确定过程的总体效果,这些问题的答案对于检查和评价清洗程序明显是很重要的。这些问题的答案也能明确可去除的步骤,以提高效率、节省公司资源。

确定每一台设备清洗程序的数目。理想的情况下,一台设备或一套系统有一个清洗程序,但是这将取决于生产的产品和清洗是否在同产品不同批之间(相对于一个较长的生产周期)或不同产品之间。当清洗程序仅用于相同产品不同批(或原料药过程中相同中间体的不同批)之间时,公司仅需要满足设备“目测干净”的标准。这种在批之间的清洗程序不需要验证。

1.设备设计

检查设备的设计,尤其在那些运用半自动或全自动的在线清洗系统及关键的大型系统中。例如,可以使用无球阀的洁净管线。当使用非卫生球阀时,清洗很困难,这在原料药企业中很普遍。检查时如发现使用后一种设备,应了解操作者在清洗时是否知道这一设备的问题,针对这一系统及球阀是否进行专门培训以及培训的水平,是否有清洗经验等是非常重要的。也要检查书面和验证过的清洗程序,以确定这类系统是否被专门说明和验证。

在大型系统中,如那些使用长管线的设备,要核对流程图和管线图以确定阀门和清洁SOP。管道和阀门应被标记,易被清洗操作员辨认。有时,由于图上及现场阀门标识不清楚,不易识别,易导致不正确的清洁操作。

要现场核对清洗程序文件中的一个重要问题,确定和控制操作结束和每个清洁步骤之间相距的时间。这对于外用药、混悬剂、原料药的操作尤其重要。残留物干燥将直接影响清洗的效果。无论在线清洗系统是否用在过程设备的清洁,都应该考虑到设备清洗的微生物检测。这包括大量的预防措施而不是在发生污染后再去清除。应该有一些证据证明日常清洁和设备贮存不会让微生物繁殖。例如,设备应在贮存前干燥,清洗操作后不允许设备有淤水。

当设备用作无菌工艺,或非无菌工艺,所生产的产品易滋生微生物时,设备清洁过程后须经灭菌或消毒程序。而这样的灭菌或消毒程序超出这个指南范围,必须指出,设备通过适当的清洗和贮存以控制生物负载,对于确保灭菌或消毒程序能取得必要的无菌保证是很重要的。从无菌工艺控制热原的观点来说,这尤其重要,因为设备灭菌程序可能未明显的灭活或除去热原。

2.清洗SOP的撰写

程序和文件

对于验证过的清洗过程,应检查程序的细节、特殊性及必备文件的数量。我们已经看过总的SOPs,并看过其它一些用于执行每一步骤所需的专门文件类型,如批生产记录及日志。执行不同清洗步骤或程序所必需的文件数量,取决于系统和清洗过程的复杂性、操作者的能力和培训程度。

当需要较复杂的清洗程序时,制定关键的清洗步骤(像原料药的合成过程)是重要的。在这方面,关于设备本身具体的文件包括谁清洁和何时清洁是必要的。但是,对于相对简单的清洁操作,执行总的清洗程序的文件就够了。

其他因素如清洗历史、清洗后残留物水平和测试结果的可变性都会决定要求的文件数量。例如,在执行认为是可接受的清洗程序后残留物检测数据变化,则必须进一步建立更有效的程序且使操作者可执行。适当评价是需要的,当操作者操作存在问题时,要求有更多的文件(指南)和培训。

3.分析方法

应确定用来测定残留或污染的分析方法的专属性和灵敏性。随着分析技术的进展,生产和清洁过程的残留物能在很低的水平检测出来。如果污染或残留物的水平不能检出,这并不意味着清洁后没有残留污染。这仅意味着样品中污染水平比分析方式的灵敏度或检测限低。公司应在取样确实能覆盖设备表面污染的情况下做挑战分析,例如在50%回收率,90%回收率的水平分析。这在得出结论前是必要的。一种不好的取样技术也可以导致反面的结果。(见下文)

4.取样

通常有两种取样方法可被接受。最可取的是从设备表面直接取样。另一种方法用冲洗溶液法。a.直接表面取样-确定使用的取样材料类型和对测试结果的影响。如用于刷条的粘合剂被发现能干扰样品的分析。因此,在早期验证时,要确保取样媒介和溶剂(溶媒中提取用)是适当的及易使用的。

直接取样的优点是能评价最难清洗和易接近的区域,从而建立每个给定表面区域上的污染物或残留物的水平。此外,“干燥的”或不溶性的残留物能通过这种物理方式取样。

b.冲洗溶液取样-使用冲洗溶液取样的两个优点是能在更大表面取样,不易进入的系统或不能常规拆卸取样的系统可以被取样和评价。

冲洗取样的缺点是残留物或污染不能被溶解或可能在设备里结垢时不能被评价。相似的情况也发生在“死角”。死角清洗的评价中,尤其对于有干燥残留物,不能通过冲洗水去判断是否干净,而是应该用目测。

检查发现当清洗验证时直接测冲洗水残留物和污染情况。仅测试冲洗水的水质(在简要测试中确实遇到)而不测试其中潜在的污染是不可接受的。

c.常规生产过程控制

监测-间接取样,当清洗程序被验证过,这对常规检测是有价值的,如电导率测试。对原料药厂家尤其如此,其中反应器、离心机和大型设备间的管线只能冲洗液取样。任何间接测试方法必须与设备情况相关。在验证中,公司应对间接测试中不洁净设备测试得出的不合格结果进行归档。

V.限度的建立

FDA不会去设定可接受的标准或方法来决定一个清洗程序是否被验证。因为整个原料药和制剂工业中使用的设备和产品具有广泛的多样性,这样做尤其不现实。公司建立残留物限度的标准应建立在厂商对涉及物料了解的逻辑基础上,而且是实际的,可行的,可证实的。为了制定合理的限度,定义分析方法的灵敏性是重要的。工业界已在文献提出一些限度要求,包括分析检测水平如10ppm,生物活性水平如1/1000的普通治疗剂量和感官水平如无可见残留物。

核对建立限度的方式。不像制剂的化学残留鉴定是已知的(如活性物质,非活性物质,降解物质),原料药过程有部分反应物和多余的副产物可能无法用化学鉴定。在建立残留限度中,仅关注主要的反应物是不够的,因为其他各种化学成分可能更难去除。除化学分析以外有些情况需要薄层扫描。在原料药的生产工艺中,尤其是高活性的化学品如一些类固醇,如果设备不专用就要考虑副产物。检查的目的是确保任何限度的基础是科学公正的。

VI.其他问题

a.安慰剂产品

为了评价和验证清洗程序,一些厂家在设备中生产一批安慰剂产品,基本上是按照原药物同样的操作参数生产。安慰剂批次的取样就为了测试残留的污染物。但是,我们记录几个重要的问题,当使用安慰剂产品验证清洗程序时这些是需要指出的。

不能保证污染物在整个系统中分散的一致。例如,如果出口阀或搅拌机的桨被污染了,污染物可能不会均匀分散在安慰剂中,它最可能集中在批次的最开始排出的部分。此外,如果污染物或残留物是大颗粒的,它可能不能均匀分散在安慰剂中。

一些公司假设残留污染物在设备表面均匀的逐渐减少,这也是错误的结论。最终,检测效果也随着污染物的稀释极大的降低。因为这样的问题,冲洗和擦拭取样应与安慰剂的方法相结合进行。

b.清洁剂

如果清洁中使用清洁剂或肥皂试检测残留物时,判断和分析将变得很困难。在清洁剂的使用中最常见问题是它的成分。许多清洁剂的供应商不能提供具体成分,这使用户难以判断残留物。对于产品残留,生产商评价清洗程序去除残留的效果是重要的,也是能做到的。但是,不同于产品残留,我们希望清洁后没有清洁剂存在(或者严格分析方法-很低)。清洁剂不是生产过程的一个部分,仅在清洗过程中添加到清洁设备中。因此,它们应该容易被去除。否则,就要选择另外一种不同的清洁剂。

c.测试到清洁

应检查和评价测试水平与再测试结果,因为测试到清洁被一些厂商作为概念使用。他们测试,再取样,再测试设备或系统直至达到可接受的残留物水平。对于已做过清洗程序的系统或设备,不应该再取样,这仅在很少的情况下被接受。连续的再测试和再取样是能表明清洗程序没有被验证,因为这些再测试实际记录了无效的清洗程序、不可接受的残留物和污染物的存在。

出处:浙江药品认证中心

作者:不详

注释:这份文件是检查员和其他FDA人员的参考资料。这份文件不约束FDA,不授予任何人任何权力、特权、利益或豁免权。仅供学习参考

第二篇:FDA新版工艺验证指南培训总结

南京绿叶思科药业培训总结

参加美国FDA2011工艺验证指南解读讲座总结

6月16日我公司生产、质量部共9人参加了中国药科大学组织的FDA2011工艺验证指南的讲座。本讲座由FDA总部药品评价和研究中心官员主讲,讲座内容如下:

此版指南将产品生命周期概念和工艺验证活动结合起来,将工艺验证分为工艺设计、.工艺确认、持续的工艺验证三个阶段。

工艺验证是指从工艺设计阶段到商业生产的整个过程中,对数据进行收集和评价,建立能够使工艺始终如一的传递到优质产品中的科学证据。

对已经上市的产品则直接执行持续工艺核实这一阶段的工作。制作商应该保持持续的信息收集和对工艺的定期评价,以发现常见的工艺变异情况,进而增加对工艺和变异的理解,评价和控制工艺参数,并建立科学的参数评价方法,在商品生产这一阶段内做到对工艺的逐步改进(如缩小参数范围等)。在此阶段如发现有重大变异或工艺有较大改动,而现有数据不足以进行分析时,可以回到工艺设计或工艺确认阶段。

提出的建议:

1.试验批量:商品正式流通时的生产批量

2.方案设计:取消关键参数的概念,扩大了考察面积,希望制造商能够对工艺

全面的重视,取样频率和监控参数必须结合风险评估和统计学

分析再做出决定。

取消最差条件的概念,工艺确认应在生产可能遇到的真实情况

下进行,不建议人为创造极端情况。

3.结果判断:所有的决定应该建立在足够的数据基础上,这些数据可以来自于

产品生命周期的全过程,并且需要通过统计学家或受过专业训

练的人员进行科学的统计学分析。

4.放行标准:必须在工艺性能确认所收集到的数据进行完整的统计学分析、验

证报告得到审批后方可放行,不建议同步放行。

5.上市条件:在正式上市流通前必须完成工艺确认,向FDA证明工艺是稳定的。而工艺确认阶段的结束标志则由制造商自行决定。(也就是

说工艺确认应该进行多少次的商品批量试验而认为收集到了足

1/4

够的数据,是由制造商决定的)

6.监控要求:在上市的初期阶段应保持一段时间高频率多项目(与工艺确认时

期相同)的监控,直到有足够的数据来进行统计学分析保证工

艺的完全可靠,才可以通过定期对工艺评价来调整监测项目。

以下内容是学习培训讲义和2011工艺验证指南的收获。

1.法规要求

设计要求:在CGMP210和211节中要求生产商必须从操作和控制两方面设计工艺,以保证得到鉴别,含量,质量,纯度都符合企业向FDA所申报标准的产品。

建立中间生产工艺规程:同时工艺设计也应针对中间生产工艺建立控制程序,中间生产工艺规程是在试验批量与成品生产批量一致的原则上以数据统计分析(已认可的参数和对未知的可能变异的参数的估计)为基础建立的。本项法规同时对生产商提出了分析工艺性能和控制批间变异的要求。

设备要求:对所使用的机械和电子设备必须有书面的计划来保证校准能够如期完成,以保证设备符合原有的设计要求。

抽样要求:1.样品必须代表接受分析的批次;2.抽样方法必须产生统计学置信度;3.批次必须符合其预设规格。

产品质量回顾:通过定期对产品质量回顾来确定工艺变更的合理性。这里的产品质量回顾是对有关产品质量和制造经验的信息和数据进行定期的审核。通过产品质量回顾可以将工艺的影响不断的反馈至产品质量上,从而开展对工艺的维护。

2.建议

2.1 总体要求

在组织工艺验证时建议采用来自多学科的综合团队(如:工艺学,制药工程,分析化学,微生物学,统计学,制造以及质量保证),所有启动的研究都应该根据可靠的,科学的原则来计划,实施。妥善记录各种活动,保证完整地收集与工艺有关的信息,及时对这些信息进行可靠的评价。这都要求该团队做好项目

管理和文件归档。

在选择研究对象时,取消了原有关键参数的概念,而是使用了基于风险的决策生命周期方法进行工艺验证。关键程度应该是连续的,而不该是二元的。

风险评估应该从属性或参数在工艺中发挥的作用和对产品的影响角度来进行评估。在工艺变更后,这些项目都必须进行重新评估。

不论如何,批间和批次间的一致性都是工艺验证的基本目标。

2.2 工艺设计

A.建立和捕获工艺知识并理解

通过早期实验室产品开发时累积的数据来加强对工艺的理解。利用分析和统计学知识来选择在实验室阶段研究工艺的潜在变异。

可以建立小试或中试模型来估计变异,变异的估计可以从以下几个角度来考虑:1.设备的设计功能和局限性,2.批量变化,2.生产操作人员,3.环境条件变化,4,检测系统

这些数据都应被记录和保存,是工艺决策(参数和质量范围的界定)和将来工艺确认和持续核实阶段的数据基础。

B.建立工艺控制策略

工艺控制可以由重要工艺控制点的物料分析和设备监控组成,通过减少输入变异和在生产中调整输入变异来达到控制目标。

在产品属性不易测量和中间体和产品不易界定的情况下可以通过工作极限和中间工艺监控来控制工艺。

2.3 工艺确认

在本指南中工艺确认包括两部分内容:

A.厂房设施设计以及公用设施与设备确认,包括这些设施或设备的4Q,其中

PQ应是在可与日常生产预期相比的负荷下进行,还应包括预期的日常生产条件下干预/停止和启动功能。

B.工艺性能验证(PPQ),PPQ必须在上一阶段完成后才可以进行。

C.PPQ的目的:为工艺可重现和始终如一的产出优秀产品建立科学证据。

来自所有相关研究的累积数据应用于PPQ中建立正式的生产条件,在此阶段将有较高的取样和额外的检测水平。

在方案中应体现取样方案的设计,包括样品数应足以对批内和批间的质量分析提供足够的样本进行统计学置信度分析。所选定的置信水平以风险分析为基础。

方案中的决策标准应包括:所用的统计学方法描述,和偏离数据的处理方法。偏离数据不得随便舍去。

2.4持续工艺验证

本阶段的目标是:在商品化生产期间持续保证工艺处于受控状态。收集和评估关于工艺性能的信息和数据,发现变异,提前预防和防止问题。

在日常的持续工艺验证中,收集与产品质量相关的数据进行趋势分析,(分析所用的统计学方法,数据收集方案由经过统计学工艺控制技术方面训练的人员制定),并定期根据分析结果对工艺进行评估。

工艺变异的来源:缺陷投诉,不合格品的调查结果,工艺偏移报告,工艺产率差异,批生产报告,原料报告,不良事件报告。这些变异应定期评价,并相应的对监测做出调整。

生产工艺的变更,必须建立在所收集的变异或数据的统计学基础上,并在实施前由质量部门进行审批。如变更对产品质量有重大影响的需要回到工艺设计或工艺确认阶段进一步收集数据,并正式通知FDA。

同样,厂房设施的状态必须通过日常检查,校准进行维护,相关数据定期评估,以确定是否应该重新确认,维护和校准频率应给予评估所得到的反馈予以调整。

学习小组

2011-06-24

第三篇:美国FDA关于制剂药厂cGMP的检查指南-93-10

Dosage Form Drug Manufacturers cGMPs(10/93)GUIDE TO INSPECTIONS OF DOSAGE FORM DRUG MANUFACTURER'S-CGMPR'S

Note: This document is reference material for investigators and other FDA personnel.The document does not bind FDA, and does no confer any rights, privileges, benefits, or immunities for or on any person(s).I.INTRODUCTION

This document is intended to be a general guide to inspections of drug manufacturers to determine their compliance with the drug CGMPR's.This guide should be used with instructions in the IOM, other drug inspection guides, and compliance programs.A list of the inspection guides is referenced in Chapter 10 of the IOM.Some of these guides are:

o Guide to Inspections of Bulk Pharmaceutical Chemicals.o Guide to Inspections of High Purity Water Systems.o Guide to Inspections of Pharmaceutical Quality Control Laboratories.o Guide to Inspections of Microbiological Pharmaceutical Quality Control Laboratories.o Guide to Inspections of Lyophilization of Parenterals.o Guide to Inspections of Validation of Cleaning Processes.o Guide to Inspections of Computerized Systems in Drug Processing.o Guideline on General Principles of Process Validation.II.CURRENT GOOD

MANUFACTURING PRACTICE

REGULATIONS

Prescription vs.Non-prescription

All drugs must be manufactured in accordance with the current good manufacturing practice regulations otherwise they are considered to be adulterated within the meaning of the FD&C Act, Section 501(a)(2)(B).Records relating to prescription drugs must be readily available for review in accordance with Sec.704(a)(1)(B)of the FD&C Act.If the product is an OTC drug which is covered by an NDA or ANDA, FDA may review, copy and verify the records under Sec.505(k)(2)of the FD&C Act.However, if the product is an OTC drug for which there is no application filed with FDA, the firm is not legally required to show these records to the investigator during an inspection being conducted under Section 704 of the FD&C Act.Nonetheless, all manufacturers of prescription and OTC drugs must comply with the drug CGMPR requirements, including those involving records.The investigator should review these records as part of the inspection in determining the firm's compliance with the CGMP regulations.On rare occasions, a firm may refuse to allow review of OTC records stating they are not legally required to.While the firm may be under no legal obligation to permit review of such records, this does not relieve the firm of its statutory requirement to comply with the good manufacturing practices under section 501(a)(2)(B)of the Food Drug and Cosmetic Act, including the requirements for maintaining records.If a firm refuses review of OTC records, the investigator should determine by other inspectional means the extent of the firm's compliance with CGMPR's.Inspectional observations and findings that CGMPR's are not being followed are to be cited on a List of Inspectional Observations, FDA-483, for both prescription and non-prescription drugs.Organization and Personnel [21 CFR 211 Subpart B]

The firm must have a quality control department that has the responsibility and authority as described in the referenced CFR.The quality control department must maintain its independence from the production department, and its responsibilities must be in writing.Obtain the name, title and inpidual responsibilities of corporate officers and other key employees as indicated in the IOM.In the drug industry, an employee's education and training for their position has a significant impact on the production of a quality product.Report whether the firm has a formalized training program, and describe the type of training received.The training received by an employee should be documented.Quality control must do product annual review on each drug manufactured, and have written annual review procedures.Review these reports in detail.This report will quickly let you know if the manufacturing process is under control.The report should provide a summary all lots that failed in-process or finished product testing, and other critical factors.Investigate any failures.Quality control must validate the manufacturing process for each drug manufactured.Review and evaluate this data.Buildings and Facilities [21 CFR 211 Subpart C]

Review the construction, size, and location of plant in relation to surroundings.There must be adequate lighting, ventilation, screening, and proper physical barriers for all operations including dust, temperature, humidity, and bacteriological controls.There must be adequate blueprints which describe the high purity water, HEPA, and compressed air systems.The site must have adequate locker, toilet, and hand washing facilities.The firm must provide adequate space for the placement of equipment and materials to prevent mix-ups in the following operations:

o receiving, sampling, and storage of raw materials;

o manufacturing or processing;

o packaging and labeling;

o storage for containers, packaging materials, labeling, and finished products;

o production and control laboratories.Equipment [21 CFR 211 Subpart D]

Review the design, capacity, construction, and location of equipment used in the manufacturing, processing, packaging, labeling, and laboratories.Describe the manufacturing equipment including brief descriptions of operating principles.Consider the use of photographs, flow charts, and diagrams to supplement written descriptions.New equipment must be properly installed, and operate as designed.Determine if the equipment change would require FDA pre-approval and/or revalidation of the manufacturing process.The equipment must be cleaned before use according to written procedures.The cleaning must be documented and validated.The equipment should not adversely effect the identity, strength, quality, or purity of the drug.The material used to manufacture the equipment must not react with the drug.Also, lubricants or coolants must not contaminate the drug.The equipment should be constructed and located to ease cleaning, adjustments, and maintenance.Also, it should prevent contamination from other or previous manufacturing operations.Equipment must be identified as to its cleaning status and content.The cleaning and maintenance of the equipment are usually documented in a log book maintained in the immediate area.Determine if the equipment is of suitable capacity and accuracy for use in measuring, weighing, or mixing operations.If the equipment requires calibration, they must have a written procedure for calibrating the equipment and document the calibration.Components and Product Containers [21 CFR 211 Subpart E]

Inspect the warehouse and determine how components, drug product containers, and closures are received, identified, stored, handled, sampled, tested, and approved or rejected.They must have written procedures which describe how these operations are done.Challenge the system to decide if it is functioning correctly.If the handling and storage of components are computer controlled, the program must be validated.The receiving records must provide traceability to the component manufacturer and supplier.The receiving records for components should contain the name of the component, manufacturer, supplier if different from the manufacturer, and carrier.In addition, it should include the receiving date, manufacturer's lot number, quantity received, and control number assigned by the firm.Check sanitary conditions in the storage area, stock rotation practices, retest dates, and special storage conditions(protection from light, moisture, temperature, air, etc.).Inspect glandular and botanical components for insect infestation.Components or finished product adulterated by rodents, insects, or chemicals must be documented and submitted for seizure.Collect the evidence even if the firm plans to voluntarily destroy the product.Be alert for components, colors, and food additives that may be new drug substances, appear to have no use in the plant or appear to be from an unknown supplier.Check the colors against the Color Additives Status List in the IOM Determine if the color is approved for its intended use, and required statements are declared on the drug label.Components might be received at more than one location.Components must be handled in accordance with the drug CGMP's including components used in the research and development lab.Determine how components are identified after receipt and quarantined until released.Components must be identified so the status(quarantine, approved, or rejected)is known.Review the criteria for removing components from quarantine and challenge the system.Determine what records are maintained in the storage area to document the movement of components to other areas, and how rejected components handled.The component container has an identification code affixed to it.This unique code provides traceability from the component manufacturer to its use in the finished product.Review the sampling and testing procedures for components, and the process by which approved materials are released for use.Decide if these practices are adequate and followed.Determine the validity, and accuracy of the firm's inventory system for drug components, containers, closures and labeling.Challenge the component inventory records by weighing a lot and comparing the results against the quantity remaining on the inventory record.Significant discrepancies in these records should be investigated.Evaluate the following to determine whether the firm has shown that the containers and closures are compatible with the product, will provide adequate protection for the drug against deterioration or contamination, are not additive or absorptive, and are suitable for use:

o Specifications for containers, closures, cotton filler, and desiccant, etc.o What tests or checks are made(cracks, glass particles, durability of material, metal particles in ointment tubes, compliance with compendium specifications, etc.).o Cleaning procedures and how containers are stored.o Handling of preprinted containers.Are these controlled as labeling, or as containers? The firm must review the labeling for accuracy.Production and Process Controls [21 CFR Subpart F]

1.Critical Manufacturing Steps [21 CFR 211.101]

Each critical step in the manufacturing process shall be done by a responsible inpidual and checked by a second responsible inpidual.If such steps in the processing are controlled by automatic mechanical or electronic equipment, its performance should be verified.Critical manufacturing steps include the selection, weighing, measuring and identifying of components, and addition of components during processing.It includes the recording of deviations from the batch record, mixing time and testing of in-process material, and the determination of actual yield and percent of theoretical yield.These manufacturing steps are documented when done, and not before or after the fact.2.Equipment Identification [21 CFR 211.105]

All containers and equipment used in to manufacture a drug should be labeled at all times.The label should identify the contents of the container or equipment including the batch number, and stage of processing.Previous identification labels should be removed.The batch should be handled and stored to prevent mixups or contamination.3.In-Line and Bulk Testing [21 CFR 211.110]

To ensure the uniformity and integrity of products, there shall be adequate in-process controls, such as checking the weights and disintegration time of tablets, the fill of liquids, the adequacy of mixing, the homogeneity of suspensions, and the clarity of solutions.Determine if in-process test equipment is on site and the specified tests are done.Be alert for prerecording of test results such as tablet weight determinations.The bulk drug is usually held in quarantine until all tests are completed before it is released to the packaging and labeling department.However, the testing might be done after packaging.product.4.Actual Yield [21 CFR 211.103]

Determine if personnel check the actual against the theoretical yield of each batch of drug manufactured.In the event of any significant unexplained discrepancies, determine if there is a procedure to prevent distribution of the batch in question, and related batches.5.Personnel Habits

Observe the work habits of plant personnel.Determine:

Their attitudes and actions involving the jobs they perform.(Careless, lackadaisical, disgruntled, etc.).Their dress.(Clean dresses, coats, shirts and pants, head coverings, etc.If proper equipment is used for a given job or whether short cuts are taken(i.e.use of hands and arms to mix or empty trays of drug components).If there are significant written or verbal language barriers that could affect their job performance.Tablet and Capsule Products

Become familiar with the type of equipment and its location in the tableting operation.The equipment may include rotary tableting machines, coating and polishing pans, punches and dies, etc.The equipment should be constructed and located to facilitate maintenance and cleaning at the end of each batch or at suitable intervals in the case of a continuous batch operation.If possible, observe the cleaning and determine if the cleaning procedure is followed.The ingredients in a tablet are the active ingredient, binders, disintegrators, bases, and lubricants.The binder is added to the batch to keep the tablet together.Excess binder will make the tablet too hard for use.The disintegrator is used to help disintegration of the tablet after administration.The base should be an inert substance which is compatible with the active ingredient and is added to provide size and weight.The lubricant helps in the flow of granulated material, prevents adhesion of the tablet material to the surface of punches and dies, and helps in tablet ejection from the machine.Tablets and capsules are susceptible to airborne contamination because of the manipulation of large quantities of dry ingredients.To prevent cross-contamination in the tableting department, pay close attention to the maintenance, cleaning, and location of equipment, and the storage of granulations and tablets.To prevent cross-contamination, the mixing, granulation, drying and/or tableting operation should be segregated in enclosed areas with its own air handling system.Determine what precautions are taken to prevent cross-contamination.When cross-contamination is suspect, investigate the problem and collect in-line samples(INV)and official samples of the suspect product.Determine what temperature, humidity, and dust collecting controls are used by the firm in manufacturing operations.Lack of temperature and humidity controls can affect the quality of the tablet.Observe the actual operation of the equipment and determine whether powders or granulations are processed according to the firm's specifications.The mixing process must be validated.The drying ovens should have their own air handling system which will prevent cross-contamination.Does the firm record drying time/temperature and maintain recording charts including loss on drying test results? Review the in-line tests performed by production and/or quality control.Some in-process tests are tablet weight, thickness, hardness, disintegration , and friability.Evaluate the disposition of in-process samples.Capsules may be either hard, or soft type.They are filled with powder, beads, or liquid by machine.The manufacturing operation of powders for capsules should follow the same practice as for tablets.Determine manufacturing controls used, in-line testing, and basis for evaluating test results for the filling operations.Sterile Products

Typically, a sterile drug contains no viable microorganisms and is non-pyrogenic.Drugs for intravenous injection, irrigation, and as ophthalmic preparations, etc., meet this criteria.In addition, other dosage forms might be labeled as sterile.For instance, an ointment applied to a puncture wound or skin abrasion.Parenteral drugs must be non-pyrogenic, because the presence of pyrogens can cause a febrile reaction in human beings.Pyrogens are the products of the growth of microorganisms.Therefore, any condition that permits bacterial growth should be avoided in the manufacturing process.Pyrogens may develop in water located in stills, storage tanks, dead legs, and piping, or from surface contamination of containers, closures, or other equipment.Parenterals may also contain chemical contaminants that will produce a pyretic response in humans or animals although there are no pyrogens present.There are many excellent reference materials which should be reviewed before the inspection.Some of these are the “Guideline on Sterile Drug Products Produced by Aseptic Processing,” and chapter 84 on pyrogens in the Remington's Pharmaceutical Sciences.Determine and evaluate the procedures used to minimize the hazard of contamination with microorganisms and particulates of sterile drugs.o Personnel

Review the training program to ensure that personnel performing production and control procedures have experience and training commensurate with their intended duties.It is important that personnel be trained in aseptic procedures.The employees must be properly gowned and use good aseptic techniques.o Buildings

The non-sterile preparation areas for sterile drugs should be controlled.Refer to Subpart C of the proposed CGMPR's for LVP's;however, deviations from these proposed regulations are not necessarily deviations from the CGMPR's.Evaluate the air cleanliness classification of the area.For guidance in this area, review Federal Standard #209E entitled “Airborne Particulate Cleanliness Classes in Cleanrooms and Clean Zones.” Observe the formulation practices or procedures used in the preparation areas.Be alert for routes of contamination.Determine how the firm minimizes traffic and unnecessary activity in the preparation area.Determine if filling rooms and other aseptic areas are constructed to eliminate possible areas for microbiological/particulate contamination.For instance, dust-collecting ledges, porous surfaces, etc.Determine how aseptic areas are cleaned and maintained.1.Air

Air supplied to the non-sterile preparation or formulation area for manufacturing solutions prior to sterilization should be filtered as necessary to control particulates.Air being supplied to product exposure areas where sterile drugs are processed and handled should be high efficiency particulate air(HEPA)filtered under positive pressure.Review the firm's system for HEPA filters, determine if they are certified and/or Dioctyl Phthalate(DOP)tested and frequency of testing.Review the compressed air system and determine if it is filtered at the point of use to control particulates.Diagrams of the HEPA filtered and compressed air systems should be reviewed and evaluated.2.Environmental Controls

Specifications for viable and non-viable particulates must be established.Specifications for viable particulates must include provisions for both air and surface sampling of aseptic processing areas and equipment.Review the firm's environmental control program, specifications, and test data.Determine if the firm follows its procedure for reviewing out-of-limit test results.Also, determine if review of environmental test data is included as a part of the firm's release procedures.Note: In the preparation of media for environmental air and surface sampling, suitable inactivating agents should be added.For example, the addition of penicillinase to media used for monitoring sterile penicillin operations and cephalosporin products.o Equipment

Determine how the equipment operates including the cleaning and maintenance practices.Determine how equipment used in the filling room is sterilized, and if the sterilization cycle has been validated.Determine the practice of re-sterilizing equipment if sterility has been compromised.Determine the type of filters used.Determine the purpose of the filters, how they are assembled, cleaned, and inspected for damage.Determine if a microbial retentive filter, and integrity testing is required.o Water for Injection

Water used in the production of sterile drugs must be controlled to assure that it meets U.S.P.specifications.Review the firm's water for injection production, storage, and delivery system.Determine that the stills, filters, storage tanks, and pipes are installed and operated in a manner that will not contaminate the water.Evaluate the firm's procedures and specifications that assure the quality of the water for injection.As reference material, review the “FDA Guide to Inspecteons of High Purity Water Systems” before initiating an inspection.o Containers and Closures

Determine how containers and closures are handled and stored.Decide if the cleaning, sterilization, and depyrogenization are adequate, and have been validated.o Sterilization

1.Methods

Determine what method of sterilization is used.A good source of reference material on validation of various sterilization processes is the Parenteral Drug Association Technical Reports.For instance, Technical Report #1 covers “Validation of Steam Sterilization Cycles.” Review and evaluate the validation data whatever the method employed.If steam under pressure is used, an essential control is a mercury thermometer and a recording thermometer installed in the exhaust line.The time required to heat the center of the largest container to the desired temperature must be known.Steam must expel all air from the sterilizer chamber to eliminate cold spots.The drain lines should be connected to the sewer by means of an air break to prevent back siphoning.The use of paper layers or liners and other practices which might block the flow of steam should be avoided.Charts of time, temperature, and pressure should be filed for each sterilizer load.If sterile filtration is used, determine the firm's criteria for selecting the filter and the frequency of changing.Review the filter validation data.Determine if the firm knows the bioburden of the drug, and examine their procedures for filter integrity testing.Filters might not be changed after each batch is sterilized.Determine if there is data to justify the integrity of the filters for the time used and that “grow through” has not occurred.If ethylene oxide sterilization is used, determine what tests are made for residues and degradation.Review the ETO sterilization cycle including preconditioning of the product, ETO concentration, gas exposure time, chamber and product temperature, and chamber humidity.2.Indicators

Determine the type of indicator used to assure sterility.Such as, lag thermometers, peak controls, Steam Klox, test cultures, biological indicators, etc.Caution: When spore test strips are used to test the effectiveness of ethylene oxide sterilization, be aware that refrigeration may cause condensation on removal to room temperature.Moisture on the strips converts the spore to the more susceptible vegetative forms of the organism which may affect the reliability of the sterilization test.The spore strips should not be stored where they could be exposed to low levels of ethylene oxide.If biological indicators are used, review the current U.S.P.on sterilization and biological indicators.In some cases, testing biological indicators may become all or part of the sterility testing.Biological indicators are of two forms, each of which incorporates a viable culture of a single species of microorganism.In one form, the culture is added to representative units of the lot to be sterilized or to a simulated product that offers no less resistance to sterilization than the product to be sterilized.The second form is used when the first form is not practical as in the case of solids.In the second form, the culture is added to disks or strips of filter paper, or metal, glass, or plastic beads.During the inspection of a firm which relies on biological indicators, review background data complied by the firm to include:

o Surveys of the types and numbers of organisms in the product before sterilization.o Data on the resistance of the organism to the specific sterilization process.o Data used for selecting the most resistant organism and its form(spore or vegetative cell).o Studies of the stability and resistance of the selected organism to the specific sterilization process.o Studies on the recovery of the organism used to inoculate the product.o If a simulated product or surface similar to the solid product is used, validation of the simulation or similarity.The simulated product or similar surface must not affect the recovery of the numbers of indicator organisms applied.o Validation of the number of organisms used to inoculate the product, simulated product, or similar surface, to include stability of the inoculum during the sterilization process.Since qualified personnel are crucial to the selection and application of these indicators, review their qualifications including experience dealing with the process, expected contaminants, testing of resistance of organisms, and technique.Review the firm's instructions regarding use, control and testing, of the biological indicator by product including a description of the method used to demonstrate presence or absence of viable indicator in or on the product.Review the data used to support the use of the indicator each time it is used.Include the counts of the inoculum used;recovery data to control the method used to demonstrate the sterilization of the indicator organism;counts on unprocessed, inoculated material to

indicate the stability of the inoculum for the process time;and

results of sterility testing specifically designed to demonstrate the presence or absence of the indicator organism for each batch or filling operation.In using indicators, you must assure yourself that the organisms are handled so they don't contaminate the drug manufacturing area and product.3.Filled Containers

Evaluate how the filled vials or ampules leave the filling room.Is the capping or sealing done in the sterile fill area? If not, how is sterility maintained until capped?

Review the tests done on finished vials, ampules, or other containers, to assure proper fill and seal.For instance, leak and torque tests.Review examinations made for particulcte contamination.You can quickly check for suspected particulate matter by using a polariscope.Employees doing visual examinations on line must be properly trained.If particle counts are done by machine, this operation must be validated.4.Personnel Practices

Check how the employees sterilize and operate the equipment used in the filling area.Observe filling room personnel practices.Are the employees properly dressed in sterile gowns, masks, caps, and shoe coverings? Observe and evaluate the gowning procedures, and determine if good aseptic technique is maintained in the dressing and filling rooms.Check on the practices after lunch and other absences.Is fresh sterile garb supplied, or are soiled garments reused?

Determine if the dressing room is next to the filling area and how employees and supplies enter the sterile area.o Laboratory Controls

For guidance on how to inspect micro and chemistry labs, review the “FDA Guide to Inspections of Pharmaceutical Quality Control Laboratories” and “FDA Guide to Inspections of Microbiological Pharmaceutical Quality Control Laboratories.”

1.Retesting for Sterility See the USP for guidance on sterility testing.Sterility retesting is acceptable provided the cause of the initial non-sterility is known, and thereby invalidates the original results.It cannot be assumed that the initial sterility test failure is a false positive.This conclusion must be justified by sufficient documented investigation.Additionally, spotty or low level contamination may not be identified by repeated sampling and testing.Review sterility test failures and determine the incidence, procedures for handling, and final disposition of the batches involved.2.Retesting for Pyrogens

As with sterility, pyrogen retesting can be performed provided it is known that the test system was compromised.It cannot be assumed that the failure is a false positive without documented justification.Review any initial pyrogen test failures and determine the firm's justification for retesting.3.Particulate Matter Testing

Particulate matter consists of extraneous, mobile, undissolved substances, other than gas bubbles, unintentionally present in parenteral solutions.Cleanliness specifications or levels of non-viable particulate contamination must be established.Limits are usually based on the history of the process.The particulate matter test procedure and limits for LVP's in the U.S.P.can be used as a general guideline.However, the levels of particulate contamination in sterile powders are generally greater than in LVP's.LVP solutions are filtered during the filling operation.However, sterile powders, except powders lyophilized in vials, cannot include filtration as a part of the filling operation.Considerable particulate contamination is also present in sterile powders which are spray dried due to charring during the process.Review the particulate matter test procedure and release criteria.Review production and control records of any batches for which complaints of particulate matter have been received.o Production Records

Production records should be similar to those for other dosage forms.Critical steps, such as integrity testing of filters, should be signed and dated by a second responsible person.Review production records to ensure that directions for significant manufacturing steps are included and reflect a complete history of production.Ointments, Liquids, and Lotions

Major factors in the preparation of these drugs are the selection of raw materials, manufacturing practices, equipment, controls, and laboratory testing.Following the basic drug inspection fundamentals, fully evaluate the production procedures.In addition, evaluate specific information regarding:

o The selection and compatibility of ingredients.o Whether the drug is a homogeneous preparation free of extraneous matter.o The possibility of decomposition, separation, or crystallization of ingredients.o The adequacy of ultimate containers to hold and dispense contents.o Procedure for cleaning the containers before filling.o Maintenance of homogeneity during manufacturing and filling operations.The most common problem associated with the production of these dosage forms is microbiological contamination caused by faulty design and/or control of purified water systems.During inspections, evaluate the adequacy of the water system.Review and evaluate the micro/chemistry test results on the routine monitoring of the water system including validation of the water system.Review any microbiological tests done on the finished drug including in-process testing.Some of these drugs have preservatives added which protect them from microbial contamination.The preservatives are used primarily in multiple-dose containers to inhibit the growth of microorganisms introduced inadvertently during or after manufacturing.Evaluate the adequacy of preservative system.Preservative effectiveness testing for these products should be reviewed.For additional information, review the “Antimicrobial Preservatives-Effectiveness” section of the U.S.P..Equipment employed for manufacturing topical drugs is sometimes difficult to clean.This is especially true for those which contain insoluble active ingredients, such as the sulfa drugs.The firm's equipment cleaning procedures including cleaning validation data should be reviewed and evaluated.Packaging and Labeling [21 CFR Subpart G]

Packaging and labeling operations must be controlled so only those drugs which meet the specifications established in the master formula records are distributed.Review in detail the packaging and labeling operations to decide if the system will prevent drug and label mix-ups.Approximately 25% of all drug recalls originate in this area.Evaluate what controls or procedures the firm has to provide positive assurance that all labels are correct.Determine if packaging and labeling operations include:

o Adequate physical separation of labeling and packaging operations from manufacturing process.o Review of:

1.Label copy before delivery to the printer.2.Printer's copy.3.Whether firm's representative inspects the printer.4.Whether or not gang printing is prohibited.5.Whether labels are checked against the master label before released to stock.Determine who is responsible for label review prior to release of the labels to production.Also, whether the labels are identical to the labeling specified in the batch production records.o Separate storage of each label(including package inserts)to avoid mixups.o Inventory of label stocks.Determine if the printer's count is accepted or if labels are counted upon receipt.o Designation of one inpidual to be responsible for storage and issuance of all labels.o Receipt by the packaging and labeling department of a batch record, or other record, showing the quantity of labels needed for a batch.Determine if the batch record is retained by the packaging supervisor or accompanies the labels to the actual packaging and labeling line.o Adequate controls of the quantities of labeling issued, used, and returned.Determine if excess labels are accounted for and if excess labels bearing specific control codes, and obsolete or changed labels are destroyed.o Inspection of the facilities before labeling to ensure that all previously used labeling and drugs have been removed.o Assurance that batch identification is maintained during packaging.o Control procedures to follow if a significant unexplained discrepancy occurs between quantity of drug packaged and the quantity of labeling issued.o Segregated facilities for labeling one batch of the drug at a time.If this is not practiced, determine what steps are taken to prevent mix-ups.o Methods for checking similar type labels of different drugs or potencies to prevent mixing.o Quarantine of finished packaged products to permit adequate examination or testing of a representative sample to safeguard against errors.Also, to prevent distribution of any batch until all specified tests have been met.o An inpidual who makes the final decision that the drug should go to the warehouse, or the shipping department.o Utilization of any outside firms, such as contract packers, and what controls are exercised over such operations.Special attention should be devoted to firms using “rolls” of pressure sensitive labels.Investigators have found instances where:

o Paper chips cut from label backing to help running the labels through a coder interfered with the code printer causing digits in the lot number to be blocked out.o Some rolls contained spliced sections resulting in label changes in the roll.o Some labels shifted on the roll when the labels were printed resulting in omitting required information.The use of cut labels can cause a significant problem and should be evaluated in detail.Most firms are replacing their cut labels with roll labels.Review prescription drugs for which full disclosure information may be lacking.If such products are found, submit labels and other labeling as exhibits with the EIR See 21 CFR 201.56 for the recommended sequence in which full disclosure information should be presented.Review labels of OTC products for warnings required by 21 CFR 369.A control code must be used to identify the finished product with a lot, or control number that permits determination of the complete history of the manufacture and control of the batch.Determine:

o The complete key(breakdown)to the code.o Whether the batch number is the same as the control number on the finished package.If not, determine how the finished package control number relates, and how it is used to find the identity of the original batch.Beginning August 3, 1994 the following new requirements will become effective:

o Use of gang-printed labels will be prohibited unless they are adequately differentiated by size, shape or color.(211.122(f))o If cut labels are used one of the following special control procedures shall be used(211.122(g)):

(1)Dedication of packaging lines.(2)Use of electronic or electromechanical equipment to conduct a 100-percent examination of finished product.(3)Use of visual inspection to examine 100-percent of the finished product for hand applied labeling.The visual examination will be conducted by one person and independently verified by a second person.o Labeling reconciliation required by 211.125 is waived for cut or roll labeling if a 100-percent examination is performed according to 211.22(g)(2).Holding and Distribution [21 CFR subpart H]

Check the finished product storage and shipping areas for sanitary condition, stock rotation, and special storage conditions needed for specific drugs.Evaluate any drugs that have been rejected, or are on hold for other than routine reasons.Laboratory Controls [21 CFR Subpart I]

Laboratory controls should include adequate specifications and test procedures to assure that components, in-process and finished products conform to appropriate standards of identity, strength, quality, and purity.In order to permit proper evaluation of the firm's laboratory controls, determine:

o Whether the firm has established a master file of specifications for all raw materials used in drug manufacture.This master file should include sampling procedures, sample size, number of containers to be sampled, manner in which samples will be identified, tests to be performed, and retest dates for components subject to deterioration.o The firm's policies about protocols of assay.These reports are often furnished by raw material suppliers;however, the manufacturer is responsible for verifying the validity of the protocols by periodically performing their own complete testing and routinely conducting identity tests on all raw materials received.o Laboratory procedure for releasing raw materials, finished bulk drugs or packaged drugs from quarantine.Determine who is responsible for this decision.Raw material specifications should include approved suppliers.For NDA or ANDA drugs, the approved suppliers listed in their specifications should be the same as those approved in the NDA or ANDA.o If the laboratory is staffed and equipped to do all raw material, in-process, and finished product testing that is claimed.o Whether drug preparations are tested during processing.If so, determine what type of tests are made and whether a representative sample is obtained from various stages of processing.o Specifications and description of laboratory testing procedures for finished products.o Procedures for checking the identity and strength of all active ingredients including pyrogen and sterility testing, if applicable.o If the laboratory conducts pyrogen tests, safety tests, or bioassays;determine the number of laboratory animals and if they are adequately fed and housed.Determine what care is provided on weekends and holidays.o Sterility testing procedures.Entries should be permanently recorded and show all results, both positive and negative.Examine representative samples being tested and their records.When checking the sterility testing procedures, determine:

1.Physical conditions of testing room.The facility used to conduct sterility testing should be similar to those used for manufacturing products.2.Laboratory procedures for handling sterile sample.3.Use of ultra-violet lights.4.Number of units tested per batch.5.Procedure for identifying test media with specific batches.6.Test media's ability to support growth of organisms.7.Length of incubation period.8.Procedure for diluting products to offset the effects of bacteriostatic agents.o Pyrogen testing procedures

Determine if animals involved in positive pyrogen tests are withdrawn from use for the required period.If the L.A.L.Test is used, review the FDA “Guideline on Validation of the Limulus Amebocyte Lysate Test ***.”

o If any tests are made by outside laboratories, report the names of the laboratories and the tests they perform.Determine what precautions the firm takes to insure that the laboratories' work is bona fide.o Methods used to check the reliability, accuracy, and precision of laboratory test procedures and instrumentation.o How final acceptance or rejection of raw materials, intermediates, and finished products is determined.Review recent rejections and disposition of affected items.o The provisions for complete records of all data concerning laboratory tests performed, including dates and endorsements of inpiduals performing the tests, and traceability.o For components and finished product, the reserve sample program and procedures should be evaluated.Challenge the system and determine if the samples are maintained and can be retrieved.The storage container must maintain the integrity of the product.o Whether stability tests are performed on:

1.The drug product in the container and closure system in which marketed.2.Solutions prepared as directed in the labeling at the time of dispensing.D

美国FDA清洗验证检查指南

第一篇:美国FDA清洗验证检查指南 美国FDA清洗验证检查指南 Ⅰ.简介 对于清洗程序的验证的讨论,已经在FDA原料药检查...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部