电脑桌面
添加蜗牛文库到电脑桌面
安装后可以在桌面快捷访问

【公务员必备】行测数学运算总结(不看后悔)

栏目:合同范文发布:2025-01-28浏览:1收藏

【公务员必备】行测数学运算总结(不看后悔)

第一篇:【公务员必备】行测数学运算总结(不看后悔)

数学运算

一、数的整除特性

(1)被2整除 偶数

(2)被3整除 看各位数字和能不能被3整除(3)被4/25整除 看数的后两位可不可以被4/25整除(4)被5整除 数的末位是0或5(5)被6整除 能够同时被2和3整除(6)被12整除 能够同时被3和4整除

被72整除 能够同时被8和9整除

由(5)(6)可总结出:如果一个数可以表示为两个互质的数的乘积,那么它的整除性就是要同时满足这两个互质的数的整除性。(7)被7/11/13整除 划后三位,用大数减小数,看能不能被7/11/13整除

例 12568 568-12=556 由于556不能被7/11/13整除,所以12568也不能被7/11/13整除。

(8)被8/125整除 看数的后三位可不可以被8/125整除(9)被11整除的另外一种情况 奇偶数位数字分别相加后做差

例 12345 首先奇数位相加1+3+5=9,再偶数位相加2+4=6,由于9-6=3,而3不能被11整除,所以12345也不能被11整除。

二、余数的性质(其实与整除性是相通的)(1)和的余数等于余数的和 例(89+78)/7的余数

先看各个数的余数,89除7余5,78除7余1,5+1=6,而6除7余6,所以(89+78)除7也余6.(2)倍数的余数等于余数的倍数

例 89除以7的余数为5,那么89*3除以7的余数为?

因为89除以7的余数为5,又因为3*5=15,而15除以7的余数是1,所以89*3除以7的余数是1.(3)积的余数等于余数的积 例(89*78)除以5 先分别求各个数的余数,89除5的余数是4,78除5的余数是3,用4*3除以5,余数为2,所以89*78除以5的余数也是2.(4)多次方的余数等于余数的多次方 例1 2010^2009除以7的余数

求底数除以7的余数,2010除以7余数为1,所以原式就是求1^2009除以7的余数,即1除以7的余数。1除以7余数是1,所以2010^2009除以7余数也是1.例2 2008^2009除以7的余数

求底数除以7的余数,2008除以7余数为6,余数为6其实相当于余(-1),所以原式就是求(-1)^2009除以7的余数,即(-1)除以7的余数。(-1)除以7余数为(-1),相当于余6,所以2008^2009除以7的余数是6.三、数的分解

分解质因数(可求约数的个数)例 求1440的约数有多少个 1440分解质因数=2^5*3^2*5 约数的个数等于(指数的个数+1)的乘积 所以1440的约数个数=6*3*2=36个。

另:一个数有几个大于1的奇约数,就有几种连续自然数分解。

例 将450拆分成若干连续自然数的和,共有几种拆法? 450=2*3^2*5^2 所以共有(2+1)*(2+1)-1=8种。利用公式求极值 a^2+b^2>=2ab ab<=[(a+b)/2]^2当且仅当a=b时,使得等号成立。例1 a、b都是自然数,且a+b=12,求ab的范围。

当a、b相差最大时,取得ab的最小值为0 当a、b相差最小是,即a=b=6时,取得ab的最大值36 所以0<=ab<=36 例2 已知3a+2b=12,求ab的范围。

当3a、2b相差最大时,取得ab的最小值为0 当3a、2b相差最小时,即3a=2b=6时,也就是a=

2、b=3时,ab取得最大值 为6,所以0<=ab<=6 例3 已知ab=36,求a+b的范围。

当a、b相差最小时,即a=b=6时,a+b取得最小值12 当a、b相差最大时,a+b取得最大值37 所以12<=a+b<=37

四、奇数和偶数

性质: 奇数+奇数=偶数

偶数+偶数=偶数

奇数=偶数=奇数

奇数*偶数=偶数

奇数*奇数=奇数

例 某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少。

A 33 B 39 C 17 D 16 设答对X道,答错Y道。

3X-Y=82,由于82是偶数,所以3X和Y同为奇数或同为偶数,又因为3X的奇偶性完全取决于X,所以X和Y同为奇数或同为偶

数。所以X-Y肯定是偶数,看选项,只有D符合。

五、公倍数和公约数 性质:若A=2^3*3^2*5 B=2^5*3^5*7 则A、B的最大公约数=2^3*3^2 最小公倍数=2^3*3^2*5*2^5*3^5*7/2^3*3^2

六、尾数计算(前提是选项4和答案尾数完全不同)例 1+2+3+4+……+N=2005003,则自然数N=? A 2000 B 2001 C 2002 D 2003 根据等差数列求和公式,可得到2005003=N+(N^2-N)/2 整理以后是4010006=N(N+1),看选项,尾数能得到6的只有2002。

七、提取公因式

13又4/19+89又9/19*0.25+0.625*89又9/19+89又9/19*0.125=? A 75 B 100 C 89又9/19 D 93又6/19

八、重复数字的因式分解

2007*200620062006-2006*200720072007=? 2007*2006*100010001-2006*2007*100010001=0 9039030/43043=? 903*10010/43*1001=210

九、整体代换

(1+1/2+1/3)*(1/2+1/3+1/4)-(1+1/2+1/3+1/4)*(1/2+1/3)=? 把(1/2+1/3)看作一个整体,比如A,(1/2+1/3+1/4)看作一个整体,比如B,所以整个式子就化为了(1+A)*B-(1+B)*A=B-A=1/2+1/3+1/4-1/2-1/3=1/4

十、利用公式法计算

20*20-19*19+18*18-17*17+……+2*2-1*1=? A 3245 B 2548 C 210 D 156 这个观察以下其实就是个等差数列,20*20-19*19=(20+19)(20-19)=39,18*18-17*17=(18+17)(18-17)=35……公差为4,第一项为3,第N项为39,共10项,带入等差数列求和公式可得到结果是210.(2+1)*(2^2+1)*(2^4+1)*(2^8+1)=?

看到这个应该会想到平方差公式,所以我们可以在(2^2+1)前面乘以(2^2-1),这样就可以看出可以利用公式计算了,在乘了以后,一定要记得后面要除去。原式就变为了(2+1)*(2^2+1)*(2^4+1)*(2^8+1)/

(2^2-

1)=(2^4-1)(2^4+1)(2^8+1)=(2^8-1)(2^8+1)=2^16-1

十一、裂项相消法

性质:A/n(n+d)=A/d(1/n-1/n+d)1/1*2*3+1/2*3*4+1/3*4*5+……+1/n(n+1)(n+2)=? 1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]

十二、错位相减法

通项形如an=An*Bn(其中An为等差数列,Bn为等比数列)的数列的求和问题,可以考虑采用错位相减法。

求和:Sn=1+3x+5x^2+7x^3+……+(2n-1)x^(n-1)=? 一式 xSn= x+3x^2+5x^3+……+(2n-3)x^(n-1)+(2n-1)x^n 二式 一式减二式(1-x)Sn=1+2x+2x^22x^3+……+2x^(n-1)-(2n-1)x^n

十三、放缩法

若X=1/1/1980+1/1981+1/1982……+1/1997,则X的整数部分是? 设A=1/1980+1/1981+1/1982……+1/1997 则A<1/1980+1/1980+1/1980……+1/1980=18/1980 A>1/1997+1/1997+1/1997……+1/1997=18/1997 18/1997 < A < 18/1980 所以1980/18 < 1/A < 1997/18 110 < X < 110又17/18 所以X的整数部分是110

十四、利用函数的性质(函数的性质这部分,学过去很久了,到底是为什么已经很模糊了,大家见谅哈)(1)若f(x)=ax^2+bx+c(a≠0)函数的对称轴方程是x=-b/2a 顶点坐标是(-b/2a,(4ac-b^2)/4a)(2)若f(a+x)=f(b-x)函数的对称轴方程是 x=(a+b)/2(3)特殊情况,若f(a+x)=f(a-x)函数的对称轴方程是 x=a(4)若f(x)= f(x+a)函数就具有周期性,周期T=a 已知f(x)=x^2+ax+3,若f(2+x)=f(2-x),则,f(2)=?

A 0 B-1 C-2 D-3 对称轴为X=2,即-a/2*1=2,所以a=-4。f(2)=4-8+3=-1

十五、比例问题

例、有一辆车子,前轮周长是(5又12分之5),后轮周长为(6又3分之1)。则前进多少米?才能使前轮转的圈数比后轮转的圈数多99圈?

A 895 B 1650 C 3705 D 4528

前轮与后轮的周长比=5又12分之5:6又3分之1=65:76 即当前轮转76圈时,后轮转65圈

76-65=11 99/11=9 5又12分之5*76*9=3705

十六、行程问题

相遇问题(核心是速度和问题)

例、甲乙两人从距离为60千米的AB两地同时相向而行,6小时后相遇。如果二人的速度都增加1千米,则相遇地点距前一次相遇地点1千米的距离。已知甲的速度比乙快,则甲的速度为()千米/小时 A.8 B.15/2 C.7 D.6 6V甲+6V乙=60,V甲+V乙=10 设第2次相遇时间为T,则有(V甲+1)T+(V乙+1)T=60 可得到T=5

由题意:6V乙-5(V乙+1)=1,可得到V乙=6 二次相遇问题(第2次相遇时走的路程是第1次相遇时走的路程的两倍)

例 甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,他们各自到达对方车站后立即返回车站后立即返回,在距A地42千米处相遇。请问A、B两地相距多少千米? A 120

B 100

C 90

D 80 行程问题的常规解法是画图列方程,画图一目了然了就。画图,设第一次相遇地点和第二次相遇地点之间的距离为A 根据第二次相遇时走的路程是第一次相遇时走的路程的两倍,看甲走的路程列方程

54*2+A=2(42+A)解出A=24 所以总距离是42+24+54=120 追及问题(核心是速度差的问题)和相遇问题思路一样的,没找例题。

流水问题(核心是公式:顺水速度=船速+水速,逆水速度=船速-水速,由这两个公式可以推导出另外两个公式:船速=(顺水速+逆水速)/2,水速=(顺水速—逆水速)/2)

例 一艘轮船在两码头之间航行。如果顺水航行需8小时,如果逆水航行需11小时。已知水速为每小时3千米,那么两码头之间的距离是多少千米?

A.180 B.185 C.190

D.176

设距离是S,则顺水速=S/8,逆水速=S/11 所以水速=(S/8-S/11)/2=3 可得到S=176 练习画展9点开门,但早就有人排队等候入场了.从第一个观众来到时起,每分钟来的观众人数一样多,如果开3个入场出口则9点9分就不再有人排队,如果开5个入场口,则9点5分就每人排队,那么第一个观众到达的时间是8点几分

A 8点10分 B 8点15分 C 8点30分 D 8点45分 设第一个观众到达的时候距9点差X分钟 每分钟来人A,每门每分钟进人B 则有:A(X+A)=9*3*B A(X+5)=5*5*B 两个式子一比,就可得到X=45,即第一个观众到达的时间是8点15分。

十七、工程问题

十八、浓度问题

例 把浓度为20%、30%和50%的某溶液混合在一起,得到浓度为36%的溶液50升.已知浓度为30%的溶液用量是浓度为20%的溶液用量的2倍,浓度为30%的溶液的用量是多少升? 20 14 1 36 6 2 50 16 N 16*1+6*2=14*N N=2 1+2+2=5 50/5=10 10*2=20

十九、利润利率

核心公式:利润=销售价-成本

利率=利润/成本=(销售价-成本)/成本=销售价/成本-1 销售价=成本*(利率+1)成本=销售价/(利率+1)

例 某商品按定价出售,每个可以获得45元的利润,现在按定价的八五折出售8个,按定价每个减价35元出售12个,所能获得的利润一样。这种商品每个定价多少元?()

A.100 B.120 C.180 D.200 设定价为A,则成本为(A-45)

由利润相等可得到[0.85A-(A-45)]*8=[(A-35)-(A-45)]*12 可得到A=200

二十、日期年龄

四年一润,百年不润,四百年再润。

二十一、植树问题

(封闭)总路线长=间距*棵数

(不封闭)总路线长=间距*(棵数-1)

例 水池的四周栽了一些树,小贾和小范一前一后朝同一个方向走,他们都边走边数树的棵数,小贾数的第21棵在小范那里是第6棵;小贾数的第8棵在小范那里是第95棵。则水池四周栽了多少棵树?

A.142

B.137

C.102

D.100 贾 21 20 19 18 17 16 …… 8 范 6 5 4 3 2 1 95 8到16中间共7棵,所以95+7=102

二十二、方阵问题

方阵总人数=最外层每边人数的平方、方阵最外层每边人数=方阵最外层总人数/4+1 方阵外一层总人数比内一层总人数多8 去掉一行、一列的总人数=去掉的每边人数*2-1 例 用方砖铺一块正方形地面,四周用不同颜色的地砖加以装饰,用47块不同颜色的砖装饰了这间地面相邻的两边,这块地面一共要用

多少块砖?

A 324 B 576 C 891 D 1024 47-1=46,46/2=23,23+1=24,24^2=576

二十三、集合和容斥问题 画文氏图,找关系

二十四、抽屉原理 原则:最不利原则

例 一个袋内有100个球,其中有红球28个,绿球20个,黄球12个,篮球20个,白球10个,黑球10个.现在从袋中人一摸球出来,如果要使摸出来的球中,至少有15个球的颜色相同,问至少要摸出几个球才能保证满足上述要求? A,78 B,77 C,75 D,68 红 绿 黄 蓝 白 黑 1 1 1 1 1 1 共10组 6*10=60 1 1 1 1 X X 1 1 1 1 2*4=8

1 X 1 1 1 1 1 3*2+1=7 所以至少60+8+7=75

二十五、统筹问题(好像这样的题目不多,做一个记住一个吧,应该考的可能性也不是很大吧,大家谁还见过别的,补充一下啊)2

换瓶问题 时间优化问题

5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需的时间分别是1分钟,2分钟,3分钟,4分钟和5分钟。如果只有一个水龙头,试问怎样适当安排他们的打水顺序,才能使每个人排队和打水的时间总和最小?并求出最小值。1 1 2 2+1 3 3 3+3 6 4 4+6 10 5 5+10 15 1+3+6+10+15=35 3

安排工人问题

一个车队有三辆汽车担负着五家工厂的运输任务,这五家工厂分别需要7,9,4,10,6名装卸工,共计36名,如果安排一部分装卸工跟车装卸则不需要那么多装卸工而只需要在装卸任务较多的工厂在安排一些装卸工就能完成任务,那么在这种情况下总共需要()名装卸工 A26 B27 C28 D29

把7,9,4,10,6从大到小排列就是10,9,7,6,4.共三辆车,所以10+9+7=26 结论就是:几辆车,就按从大到小排列好顺序后前几个数相加。

二十六、排列组合和概率问题 排列组合 一 排队

6个人站成一排,有多少种排法?A6,6 1 优先法 甲不站在两端,有多少种排法? C4,1A5,5 2 捆绑法 甲乙必须相邻,有多少种排法?2*A5,5 3 插空法 甲乙必须分开,有多少种排法?A5,2 4 对陈法 甲必须在已的左边,有多少种排法?A6,6/2 5 分类法 甲不站排头,已不站排尾,有多少种排法? 乙站排头 A5,5 乙不站排头 C4,1C4,1A4,4 二 插板法(条件1 相同元素 2 每份至少一个)

10台电脑分给3所学校,每所学校至少分一台,有多少种分法?C9,2 每所学校至少分两台呢?C6,2 现在给这三所学校编号1,2,3,要使每所学校的电脑数不小于他们的编号数,有几种分法?C6,2 2 有10粒糖,如果每天至少吃一粒,吃完为止,求有多少种不同吃法?

一天吃完1种,2天吃完C9,1,类推,1+C9,1+C9,2+……+C9,9=2^9=512 三 去除顺序对称法

将8个苹果平均分给4个小朋友,有多少种分法?C8,2C6,2C4,2C2,2 将8个苹果平均分成4堆,有几种分法?C8,2C6,2C4,2C2,2/A4,4 6个人站成一圈,有几种排法?A6,6/6

一张节目单原有3个节目,先保持3个节目相对顺序不变,添进两个新节目,问多少种不同方法?(只记得题的大体意思了哈,大家见谅)A5,5/A3,3 四 错位重排问题

3个数的错位排列数D(3)=2种

D(4)=9 D(5)=44

D(n)=(n-1)[D(n-1)+D(n-2)] 5个瓶子,其中3个贴错了标签,一共多少种贴错方法?C5,3*2=20

五 传球问题(适用于从某元素开始,中间不考虑,最终回到起点的问题)1 画图法 2 公式法 有4人传球,从甲开始传,经过5次,回到甲手里,共有多少种传法?

画图法: 甲

甲——非甲——非甲——非甲——非甲——甲 甲

甲——非甲3种 非甲——非甲2种 非甲——甲1种 上:3*1*3*2*1=18 中:3*2*2*2*1=24 下:3*2*1*3*1=18 所以18+24+18=60种

公式法:M人 传了N次 总次数S S=(M-1)^N+(-1)^N(M-1)/M 带入这题就是S=(4-1)^5+(-1)^5(4-1)/4=60种 六 一例题

某单位今天新进了3个工作人员,可以分配到3个部门,但每个部门至多只能接收2个人,共有多少种不同的分配方案?

A 12 B 16 C 24 D 以上都不对 A3,3+C3,2A3,2=6+18=24 概率

一 三局两胜和五局三胜模型

甲乙两队进行一场排球赛,根据以往经验,单局比赛甲队胜已队的概率是0.6,本场比赛采用五局三胜制,即先胜3局的队获胜,比赛结束,设各局比赛相互间没有影响。

前三局比赛甲队领先的概率(三局两胜模型)C3,2*0.6^2*0.4 2 本场比赛已队3:2取胜的概率

最后一局一定是乙胜,前四局打平了。C4,2*0.4^2*0.6^2*0.4 二 硬币模型

任意抛3枚硬币,恰好有一枚正面朝上的概率? A 1/4 B 1/3 C 3/8 D 3/4 C3,1*0.5*0.5^2 三 袋中拿球模型(不放回)袋中有4个红球,6个白球,除颜色不同无其他区别,现在把球随机的一只只摸出来,求第2次摸到的球是红球的概率。

方法1 6/10*4/9+4/10*3/9

方法2 4*A9,9/A10,10(10个排一排)(整体考虑)方法3 4*9/A10,2(只考虑前两种情况)方法4 C9,3/C10,4

四 两个例题

某气象站天气预报的准确率为80%,计算它5次预报中至少一次报错的概率。80%^5-20%^5

一种电器在出厂时每6个正品装成一箱,在装箱时不小心把两件次品和4件正品装入了一箱,为了找出该箱中的次品,我们对该箱中的产品进行了不放回测试,每次取出一个。求 1 前两次取出都是次品的概率 A2,2/A6,2 2 取3次才能取出2件次品的概率 2*C2,1C4,1*1/A6,3

二十七、代入法和倒推法

例、李白去买酒,无事街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,壶中原有多少酒? A 1斗 B 0.875斗 C 0.5斗 D 0.375斗 倒推法:店—— 花—— 店—— 花——店——花 0.875——1.75——0.75——1.5——0.5——1

二十八、数学归纳法

例1 在一张正方形的纸片上,有900 个点,加上正方形的4 个顶点,共有904 个点。这些点中任意3 个点不共线,将这纸剪成三角形,每个三角形的三个点是这904 个点中的点,每个三角形都

不含这些点。可以剪多少个三角形? 刚开始画图,4个点 2个 5个点 4个 6个点 6个 即多一个点,多俩三角形。

所以多900个点时,多了1800个三角形 即总共可以剪出1800+2=1802个三角形

例2 有一楼梯共10级,如规定每次只能跨上一级或两级,要登上第10级,有多少种不同的走法? A 89 B 55 C 34 D 78 级数 走法 4 5 6 7 2 3 5 …… 8 13 21 34 55 89 归纳:因为一次只能走一步或两步,若想迈到第10级,上一

步一定是在第8或9级上,所以就是就是8级和9级的步法相加。

例3 小明家住二层,他每次回家上楼梯时都是一步迈两级或三级台阶。已知相邻楼层之间有16级台阶,那么小明从一层到二层共有多少种不同的走法?

A 54 B 64 C 57 D 37 和上个题目是一样的道理,因为一次只能迈2步或3步,若想上到16级,上一步必须是在第13或14级上,规律就是隔一项的前两项相加。

列举以下即可得到答案是37.例4 5^3+6^3+7^3+……+20^3=? 归纳可得规律:1^3=1,1^3+2^3=9=(1+2)^2,1^3+2^3+3^3=36=(1+2+3)^3,类比以下就好了。这个结果是44000

第二篇:公务员考试资料 2009公务员必考行测数学运算经典题型总结训练

数学运算经典题型总结训练

一、容斥原理

容斥原理关键就两个公式:

1.两个集合的容斥关系公式:A+B=A∪B+A∩B 2.三个集合的容斥关系公式:

A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C 请看例题:

【例题1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是()

A.22 B.18 C.28 D.26

【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50; A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。答案为A。

【例题2】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问两个频道都没看过的有多少人?

【解析】设A=看过2频道的人(62),B=看过8频道的人(34),显然,A+B=62+34=96;

A∩B=两个频道都看过的人(11),则根据公式A∪B= A+B-A∩B=96-11=85,两个频道都没看过的人数为100-85=15人。

二、作对或做错题问题 【例题】某次考试由30到判断题,每作对一道题得4分,做错一题倒扣2分,小周共得96分,问他做错了多少道题?

A.12 B.4 C.2 D.5 【解析】作对一道可得4分,如果每作对反而扣2分,这一正一负差距就变成了6分.30道题全做对可得120分,而现在只得到96分,意味着差距为24分,用24÷6=4即可得到做错的题,所以可知选择B

三、植树问题

核心要点提示:①总路线长②间距(棵距)长③棵数。只要知道三个要素中的任意两个要素,就可以求出第三个。

【例题1】李大爷在马路边散步,路边均匀的栽着一行树,李大爷从第一棵数走到第15棵树共用了7分钟,李大爷又向前走了几棵树后就往回走,当他回到第5棵树是共用了30分钟。李大爷步行到第几棵数时就开始往回走?

A.第31棵 B.第32棵 C.第33棵 D.第34棵

解析:李大爷从第一棵数走到第15棵树共用了7分钟,也即走14个棵距用了7分钟,所以走每个棵距用0.5分钟。当他回到第5棵树时,共用了30分钟,计共走了30÷0.5=60个棵距,所以答案为B。第一棵到第33棵共32个棵距,第33可回到第5棵共28个棵距,32+28=60个棵距。

【例题2】为了把2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林。某单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗:()

A.8500棵 B.12500棵 C.12596棵 D.13000棵

解析:设两条路共有树苗ⅹ棵,根据栽树原理,路的总长度是不变的,所以可根据路程相等列出方程:(ⅹ+2754-4)×4=(ⅹ-396-4)×5(因为2条路共栽4排,所以要减4)解得ⅹ=13000,即选择D。

四、浓度问题

【例1】(2008年北京市应届第14题)——

甲杯中有浓度为17%的溶液400克,乙杯中有浓度为23%的溶液600克。现在从甲、乙两杯中取出相同总量的溶液,把从甲杯中取出的倒入乙杯中,把从乙杯中取出的倒入甲杯中,使甲、乙两杯溶液的浓度相同。问现在两杯溶液的浓度是多少()A.20% B.20.6% C.21.2% D.21.4% 【答案】B。解析:只要抓住了整个过程最为核心的结果——“甲、乙两杯溶液的浓度相同”,问题就变得很简单了。因为两杯溶液最终浓度相同,因此整个过程可以等效为——将甲、乙两杯溶液混合均匀之后,再分开成为400克的一杯和600克的一杯。因此这道题就简单的变成了“甲、乙两杯溶液混合之后的浓度是多少”这个问题了。五.抽屉问题

(1)3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。(2)5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了2块手帕。

(3)6只鸽子飞进5个鸽笼,那么一定有1个鸽笼至少飞进2只鸽子。

由上可以得出:

抽屉原理1:把多于n个的物体放到n-1个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

再看下面的两个例子:

(4)把30个苹果放到6个抽屉中,问:是否存在这样一种放法,使每个抽屉中的苹果数都小于等于5?

(5)把30个以上的苹果放到6个抽屉中,问:是否存在这样一种放法,使每个抽屉中的苹果数都小于等于5?

解答:(4)存在这样的放法。即:每个抽屉中都放5个苹果;(5)不存在这样的放法。即:无论怎么放,都会找到一个抽屉,它里面至少有6个苹果。

从上述两例中我们还可以得到如下规律:

抽屉原理2:把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。

可以看出,“原理1”和“原理2”的区别是:“原理1”物体多,抽屉少,数量比较接近;“原理2”虽然也是物体多,抽屉少,但是数量相差较大,物体个数比抽屉个数的几倍还多几。

解此类问题的重点就是要找准“抽屉”,只有“抽屉”找准了,“苹果”才好放。

我们先从简单的问题入手:

(1)3只鸽子飞进了2个鸟巢,则总有1个鸟巢中至少有几只鸽子?(答案:2只)

(2)把3本书放进2个书架,则总有1个书架上至少放着几本书?(答案:2本)

(3)把3封信投进2个邮筒,则总有1个邮筒投进了不止几封信?(答案:1封)

(4)1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有几只鸽子?(答案:1000÷50=20,所以答案为20只)

(5)从8个抽屉中拿出17个苹果,无论怎么拿。我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了几个苹果?(答案:17÷8=2„„1,2+1=3,所以答案为3)

(6)从几个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果?(答案:25÷□=6„„□,可见除数为4,余数为1,抽屉数为4,所以答案为4个)

上面(4)、(5)、(6)题的规律是:物体数比抽屉数的几倍还多几的情况,可用“苹果数”除以“抽屉数”,若余数不为零,则“答案”为商加1;若余数为零,则“答案”为商。其中第(6)题是已知“苹果数”和“答案”来求“抽屉数”。

抽屉问题的用处很广,如果能灵活运用,可以解决一些看上去相当复杂、觉得无从下手,实际上却是相当有趣的数学问题。例1:某班共有13个同学,那么至少有几人是同月出生?()A.13 B.12 C.6 D.2

解1:找准题中两个量,一个是人数,一个是月份

例2:某班参加一次数学竞赛,试卷满分是30分。为保证有2人的得分一样,该班至少得有几人参赛?()A.30 B.31 C.32 D.33 解2:满分是30分,则一个人可能的得分有31种情况(从0分到30分),所以“苹果”数应该是31+1=32。【已知苹果和抽屉,用“抽屉原理2”】

例3.在某校数学乐园中,五年级学生共有400人,年龄最大的与年龄最小的相差不到1岁,我们不用去查看学生的出生日期,就可断定在这400个学生中至少有两个是同年同月同日出生的,你知道为什么吗?

解3:因为年龄最大的与年龄最小的相差不到1岁,所以这400名学生出生的日期总数不会超过366天,把400名学生看作400个苹果,366天看作是366个抽屉,(若两名学生是同一天出生的,则让他们进入同一个抽屉,否则进入不同的抽屉)由“抽屉原则2”知“无论怎么放这400个苹果,一定能找到一个抽屉,它里面至少有2(400÷366=1„„1,1+1=2)个苹果”。即:一定能找到2个学生,他们是同年同月同日出生的。

例4:有红色、白色、黑色的筷子各10根混放在一起。如果让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证至少有两根筷子是同色的?为什么?(2)至少拿几根,才能保证有两双同色的筷子,为什么?

解4:把3种颜色的筷子当作3个抽屉。则:

(1)根据“抽屉原理1”,至少拿4根筷子,才能保证有2根同色筷子;

(2)从最特殊的情况想起,假定3种颜色的筷子各拿了3根,也就是在3个“抽屉”里各拿了3根筷子,不管在哪个“抽屉”里再拿1根筷子,就有4根筷子是同色的,所以一次至少应拿出3×3+1=10(根)筷子,就能保证有4根筷子同色。

例5.证明在任意的37人中,至少有4人的属相相同。

解5:将37人看作37个苹果,12个属相看作是12个抽屉,由“抽屉原理2”知,“无论怎么放一定能找到一个抽屉,它里面至少有4个苹果”。即在任意的37人中,至少有4(37÷12=3„„1,3+1=4)人属相相同。

例6:某班有个小书架,40个同学可以任意借阅,试问小书架上至少要有多少本书,才能保证至少有1个同学能借到2本或2本以上的书?

解6:将40个同学看作40个抽屉,书看作是苹果,由“抽屉原理1”知:要保证有一个抽屉中至少有2个苹果,苹果数应至少为40+1=41(个)。即:小书架上至少要有41本书。

例7:有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两颗颜色 相同,应至少摸出几粒?()A.3 B.4 C.5 D.6 解7:把珠子当成“苹果”,一共有10个,则珠子的颜色可以当作“抽屉”,为保证 摸出的珠子有2颗颜色一样,我们假设每次摸出的分别都放在不同的“抽屉”里,摸了4 个颜色不同的珠子之后,所有“抽屉”里都各有一个,这时候再任意摸1个,则一定有 一个“抽屉”有2颗,也就是有2颗珠子颜色一样。

例8:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同?

A.21 B.22 C.23 D.24

解8:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1个“抽屉”里有6张花色一样。答案选C。

归纳小结:解抽屉问题,最关键的是要找到谁为“苹果”,谁为“抽屉”,再结合两个原理进行相应分析。可以看出来,并不是每一个类似问题的“抽屉”都很明显,有时候“抽屉”需要我们构造,这个“抽屉”可以是日期、扑克牌、考试分数、年龄、书架等等变化的量。行测:数学运算类试题精解

一、数学运算测验特点分析

想要做好本项测验,必须要熟悉数学中的一些基本概念。另外,还必须掌握一些基本的计算方法和技巧,当然,这还需要做一定量的题来逐渐积累。数学运

二、数学运算题解题方法及规律

由于这类题型只涉及加、减、乘、除等基本运算法则,主要是数字的运算,所以,解题关键在于找捷径和简便方法。解答这类题目,应当注意以下几点:一是要准确理解和分析文字表述,准确把握题意,不要为题中一些枝节所诱导;二是掌握一些常用的数学运算技巧、方法和规律,一般来讲,行政职业能力测验中出现的题目并不需要花费大量计算功夫的,应当首先想简便运算的方法;三是要熟练掌握一些题型及其解题方法。(如比例问题、百分数问题、行程问题、工程问题等)。还要学会使用排除法来提高命中率,可以根据选项中数值的大小、尾数、位数等方面来排除,提高答对题的概率。

三、数学运算典型规律例析(一)尾数观察法

【例1】 425+683+544+828的值是()。A.2488 B.2486 C.2484 D.2480

【解析】该题中各项的个位数相加=5+3+4+8=20,尾数为0,4个选项中只有一个尾数也为0,故正确选项为D。(二)凑整法

【例题2】99×48的值是()A.4 752 B.4652 C.4762 D.4 862 【解答】此题可将99+1=100,再乘以48,得4 800,然后再减48。(三)比例分配问题

【例题3】一所学校一、二、三年级学生总人数为450人,三个年级的学生比例为2∶3∶4,问学生人数最多的年级有多少人?()A.100 B.150 C.200 D.250 【解答】答案为C。解答这种题,可以把总数看做包括了2+3+4=9份,其中人数最多的肯定是占4/9的三年级,所以答案是200人。(四)路程问题

【例题4】某人从甲地步行到乙地,走了全程的2/5之后,离中点还有2.5公里。问甲乙两地距离多少公里?()A.15 B.25 C.35 D.45 【解答】全程的中点即为全程的2.5/5处,离2/5处为0.5/5,这段路有2.5公里,因此很快可以算出全程为25公里。(五)工程问题

【例题5】一件工程,甲队单独做,15天完成;乙队单独做,10天完成。两队合作,几天可以完成?()A.5天 B.6天 C.7.5天 D.8天

【解答】工程问题一般的数量关系及结构是:工作总量÷工作效率=工作时间,可以把全工程看做“1”,工作要n天完成推知其工作效率为1/n,两组共同完成的工作效率为(1/n1)+(1/n2),根据这个公式很快可以得到答案为6天。(六)植树问题

【例题6】若一米远栽一棵树,问在345米的道路上栽多少棵树?()A.343 B.344 C.345 D.346 【解答】本题要考虑到起点和终点两处都要栽树,所以答案为346。(七)对分问题

【例题7】一根绳子长40米,将它对折剪断;再对折剪断;第三次对折剪断,此时每根绳子长多少米?()A.5米 B.10米 C.15米 D.20米

【解答】对分一次为2等份,对分两次为2×2等份,对分三次为2×2×2等份,答案为A。(八)跳井问题

【例题8】青蛙在井底向上爬,井深10米,青蛙每次跳上5米,又滑下来4米,像这样青蛙需跳几次方可出井?()A.6次 B.5次 C.9次 D.10次

【解答】不要被题中的枝节所蒙蔽,每次跳上5米滑下4米实际上就是每次跳1米,因为跳到第6次的时候,就出了井口,不再下滑。(九)会议问题

【例题9】某单位召开一次会议,会议前制定了费用预算。后来由于会期缩短了3天,因此节省了一些费用,仅伙食费一项就节约了5 000元,这笔钱占预算伙食费的1/3。伙食费预算占会议总预算的3/5,问会议的总预算是多少元?()A.20 000 B.25 000 C.30 000 D.35 000 【解答】答案为B。预算伙食费用为:5 000÷1/3=15 000元。15 000元占总预算的3/5,则总预算为15 000÷(3/5)=25 000元。

第三篇:2012国家公务员行测数学运算四大经典题型总结

08年国家公务员行测数学运算四大经典题型总结

一、容斥原理

容斥原理是2004、2005年中央国家公务员考试的一个难点,很多考生都觉得无从下手,其实,容斥原理关键就两个公式:

1.两个集合的容斥关系公式:A+B=A∪B+A∩B

2.三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C

请看例题:

【例题1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是()

A.22 B.18 C.28 D.26

【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50; A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。答案为A。

【例题2】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问两个频道都没看过的有多少人?

【解析】设A=看过2频道的人(62),B=看过8频道的人(34),显然,A+B=62+34=96;

A∩B=两个频道都看过的人(11),则根据公式A∪B= A+B-A∩B=96-11=85,所以,两个频道都没看过的人数为100-85=15人。

二、作对或做错题问题

【例题】某次考试由30到判断题,每作对一道题得4分,做错一题倒扣2分,小周共得96分,问他做错了多少道题?

A.12 B.4 C.2 D.5

【解析】

方法一

假设某人在做题时前面24道题都做对了,这时他应该得到96分,后面还有6道题,如果让这最后6道题的得分为0,即可满足题意.这6道题的得分怎么才能为0分呢?根据规则,只要作对2道题,做错4道题即可,据此我们可知做错的题为4道,作对的题为26道.方法二

作对一道可得4分,如果每作对反而扣2分,这一正一负差距就变成了6分.30道题全做对可得120分,而现在只得到96分,意味着差距为24分,用24÷6=4即可得到做错的题,所以可知选择B

三、栽树问题

核心要点提示:①总路线长②间距(棵距)长③棵数。只要知道三个要素中的任意两个要素,就可以求出第三个。

【例题1】李大爷在马路边散步,路边均匀的栽着一行树,李大爷从第一棵数走到底15棵树共用了7分钟,李大爷又向前走了几棵树后就往回走,当他回到第5棵树是共用了30分钟。李大爷步行到第几棵数时就开始往回走?

A.第32棵 B.第32棵 C.第32棵 D.第32棵

解析:李大爷从第一棵数走到第15棵树共用了7分钟,也即走14个棵距用了7分钟,所以走没个棵距用0.5分钟。当他回到第5棵树时,共用了30分钟,计共走了30÷0.5=60个棵距,所以答案为B。第一棵到第33棵共32个棵距,第33可回到第5棵共28个棵距,32+28=60个棵距。

【例题2】为了把2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林。某单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗:()

A.8500棵 B.12500棵 C.12596棵 D.13000棵

解析:设两条路共有树苗ⅹ棵,根据栽树原理,路的总长度是不变的,所以可根据路程相等列出方程:(ⅹ+2754-4)×4=(ⅹ-396-4)×5(因为2条路共栽4排,所以要减4)

解得ⅹ=13000,即选择D。

四、和差倍问题

核心要点提示:和、差、倍问题是已知大小两个数的和或差与它们的倍数关系,求大小两个数的值。(和+差)÷2=较大数;(和—差)÷2=较小数;较大数—差=较小数。

【例题】甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲班和乙班各有图书多少本?

解析:设乙班的图书本数为1份,则甲班和乙班图书本书的合相当于乙班图书本数的4倍。乙班160÷(3+1)=40(本),甲班40×3=120(本)。

第四篇:2009必考行测数学运算经典题型总结训练

2009必考行测数学运算经典题型总结训练

一、容斥原理

容斥原理关键就两个公式:

1.两个集合的容斥关系公式:A+B=A∪B+A∩B

2.三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C

请看例题:

【例题1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是()

A.22 B.18 C.28 D.26

【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50; A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。答案为A。

【例题2】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问两个频道都没看过的有多少人?

【解析】设A=看过2频道的人(62),B=看过8频道的人(34),显然,A+B=62+34=96;

A∩B=两个频道都看过的人(11),则根据公式A∪B= A+B-A∩B=96-11=85,所以,两个频道都没看过的人数为100-85=15人。

二、作对或做错题问题

【例题】某次考试由30到判断题,每作对一道题得4分,做错一题倒扣2分,小周共得96分,问他做错了多少道题?

A.12 B.4 C.2 D.5

【解析】

方法一

假设某人在做题时前面24道题都做对了,这时他应该得到96分,后面还有6道题,如果让这最后6道题的得分为0,即可满足题意.这6道题的得分怎么才能为0分呢?根据规则,只要作对2道题,做错4道题即可,据此我们可知做错的题为4道,作对的题为26道.方法二

作对一道可得4分,如果每作对反而扣2分,这一正一负差距就变成了6分.30道题全做对可得120分,而现在只得到96分,意味着差距为24分,用24÷6=4即可得到做错的题,所以可知选择B 排列组合的常见题型及其解法(有解析答案)

一.特殊元素(位置)用优先法

把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。

例1.6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?

分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。

元素分析法

因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有 4种站法;第二步再让其余的5人站在其他5个位置上,有120 种站法,故站法共有: 480(种)

二.相邻问题用捆绑法

对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。

例2.5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?

解:把3个女生视为一个元素,与5个男生进行排列,共有 6x5x4x3x2种,然后女生内部再 1 进行排列,有 6种,所以排法共有: 4320(种)。

三.相离问题用插空法

元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。

例3.7人排成一排,甲、乙、丙3人互不相邻有多少种排法?

解:先将其余4人排成一排,有 4x3x2x1种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有5x4x3 种,所以排法共有:1440(种)四.定序问题用除法

对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有 种,个元素的全排列有 种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有 种排列方法。

例4.由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?

解:不考虑限制条件,组成的六位数有 C(1,5)*P(5,5)种,其中个位与十位上的数字一定,所以所求的六位数有:C(1,5)*P(5,5)/2(个)

五.分排问题用直排法

对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。

例5.9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?

解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有P(9,9)种。

六.复杂问题用排除法

对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。在应用此法时要注意做到不重不漏。

例6.四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有()

A.150种

B.147种

C.144种

D.141种

解:从10个点中任取4个点有C(4,10)种取法,其中4点共面的情况有三类。第一类,取出的4个点位于四面体的同一个面内,有4xC(4,6)种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。以上三类情况不合要求应减掉,所以不同的取法共有: C(10,4)-4*C(6,4)-6-3=141种。

七.排列、组合综合问题用先选后排的策略

处理排列、组合综合性问题一般是先选元素,后排列。

例7.将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?

解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,1),(1,2,1),分成三组之后在排列共有: 6(种),第二步将这三组教师分派到3种中学任教有p(3,3)种方法。由分步计数原理得不同的分派方案共有:36(种)。因此共有36种方案。

八.隔板模型法

常用于解决整数分解型排列、组合的问题。

例8 有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?

解:6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,将5个隔板插入9个空,每一种插法,对应一种分配方案,故方案有:C(5,9)种 两集合问题快捷通解公式

【 国2006一类-42】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人

A.27人

B.25人

C.19人

D.10人

上题就是数学运算试题当中经常会出现的“两集合问题”,这类问题一般比较简单,使用容斥原理或者简单画图便可解决。但使用容斥原理对思维要求比较高,而画图浪费时间比较多。鉴于此类问题一般都按照类似的模式来出,下面给出一个通解公式,希望对大家解题能有帮助:

“满足条件一的个数”+“满足条件二的个数”-“两者都满足的个数”=“总个数”-“两者都不满足的个数”

例如上题,代入公式就应该是:40+31-x=50-4,得到x=25。

【国2004A-46】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是多少

A.22

B.18

C.28

D.26 代入公式:26+24-x=32-4,得到x=22 【国2004B-46】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都及格的有22人,那么两次考试都没有及格的人数是多少

A.10

B.4

C.6

D.8

【山东2004-14】某班有50名学生,在第一次测验中有26人得满分,在第二次测验中有21人得满分。如果两次测验中都没有得满分的学生有17人,那么两次测验中都获得满分的人数是多少?

A.13人

B.14人

C.17人

D.20人

【广东2005下-8】有62名学生,会击剑的有11人,会游泳的有56人,两种都不会用的有4人,问两种都会的学生有多少人?

A.1人

B.5人

C.7人

D.9人

【广东2006上-11】一个俱乐部,会下象棋的有69人,会下围棋的有58人,两种棋都不会下的有12人,两种棋都会下的有30人,问这个俱乐部一共有多少人?

A.109人

B.115人

C.127人

D.139人

【北京社招2007-18】电视台向100人调查昨天收看电视情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问,两个频道都没有看过的有多少人?

A.4

B.15

C.17

D.28

【山东2003-12】一个停车场有50辆汽车,其中红色轿车35辆,夏利轿车28辆,有8辆既不是红色轿车又不是夏利轿车,问停车场有红色夏利轿车多少辆? A.14

B.21

C.15

D.22

【国2004B-46】

B

【解析】26+24-22=32-x

=> x=4 【山东2004-14】

B

【解析】26+21-x=50-17

=> x=14

【广东2005下-8】

D

【解析】11+56-x=62-4

=> x=9 【广东2006上-11】

A

【解析】69+58-30=x-12

=> x=109 【北京社招2007-18】

B

【解析】62+34-11=100-x

=> x=15

【山东2003-12】

B

【解析】35+28-x=50-8

=> x=21

新方法处理有关牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?

分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量.

设1头牛一天吃的草为1份.那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完.前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出 3 的草,后者是原有的草加10天新长出的草.

200-150=50(份),20-10=10(天),说明牧场10天长草50份,1天长草5份.也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草.由此得出,牧场上原有草

(10-5)×20=100(份)

或(15-5)×10=100(份).

现在已经知道原有草100份,每天新长出草5份.当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天).

所以,这片草地可供25头牛吃5天.

在例1的解法中要注意三点:

(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.

(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.

(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.

例2 一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?

分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似.

出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水.因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题.

设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量.两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是

水管排原有的水,可以求出原有水的水量为

解:设出水管每分钟排出的水为1份.每分钟进水量

答:出水管比进水管晚开40分钟.

例3 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?

分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少.但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量.

设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草

(20+10)×5=150(份).

由150÷10=15知,牧场原有草可供15头牛吃10天,寒冷占去10头牛,所以,可供5头牛吃10天.

例4 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?

分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题.

上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度.男 4 孩5分钟走了20×5=100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级.由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有

(20+10)×5=150(级).

解:自动扶梯每分钟走

(20×5-15×6)÷(6-5)=10(级),自动扶梯共有(20+10)×5=150(级).

答:扶梯共有150级.

例5 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?

分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.

旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客.

设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分 钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客

(4×30-5×20)÷(30-20)=2(份).

假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为

(4-2)×30=60(份)或(5-2)×20=60(份).

同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要

60÷(7-2)=12(分).

例6 有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?

分析与解:例1是在同一块草地上,现在是三块面积不同的草地.为了解决这个问题,只需将三块草地的面积统一起来.

[5,6,8]=120.

因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.

因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.

120÷8=15,问题变为:120公顷草地可供19×15=285(头)牛吃几天?

因为草地面积相同,可忽略具体公顷数,所以原题可变为:

“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?”

这与例1完全一样.设1头牛1天吃的草为1份.每天新长出的草有

(240×14-264×10)÷(14-10)=180(份).

草地原有草(264-180)×10=840(份).可供285头牛吃

840÷(285-180)=8(天).

所以,第三块草地可供19头牛吃8天

植树问题常见的几种类型 在一段直线上植树,两端都植树,则棵树=段数+1 在一段直线上植树,两端都不植树,则棵树=段数-1 在一段直线上植树,一端植树,则棵树=段数

在一段封闭曲线上植树,棵树=段数

具体题目如下

1.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株? 2.有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵?

3.有一条2000米的公路,每相隔50米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根? 4.某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?

5.有一个等边三角形的花坛,边长20米。每个顶点都要栽一棵月季花,每相隔2米再栽一棵月季花,花坛一周能栽多少棵月季花? 方阵问题

学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题).方阵的基本特点是:

①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2,②每边人(或物)数和四周人(或物)数的关系:

四周人(或物)数=[每边人(或物)数一1]×4;

每边人(或物)数=四周人(或物)数÷4+1.③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数 方阵总人数计算公式

(最外层人数/4+1)的平方的

解析如下

1.提示:由于是封闭路线栽树,所以棵数=段数,150÷3=50(棵)。

2.提示:在正方形操场边上栽树.正方形边长都相等,四个角上栽的树是相邻的两条边公有的一棵,所以每边栽树的棵数为17-1=16(棵),共栽:(17-1)×4=64(棵)

答:共栽树64棵。

3.41根。

2000÷50+1=41(根)

4.248棵。(1000÷8-1)×2=124×2=248(棵)

5.30棵。20×3÷2=30(棵)

路及其演变问题

一、问题提出

有这样的问题,如:牧场上有一片均匀生长的牧草,可供27头牛吃6周,或供23头牛吃9周。那么它可供21头牛吃几周?这类问题统称为“牛吃草”问题,它们的共同特点是由于每个单位时间草的数量在发生变化,从而导致时间不同,草的总量也不相同。

目前小学奥数辅导教材中对此类问题的通用解法是用算术方法求出每个单位时间草的变化量等于多少头牛的吃草量,再求出原有草的量等于多少头牛的吃草量,从而得出答案。这种方法在数量之间的关系换算上较麻烦,一旦题目增加难度,或与工程问题结合,转成进水排水问题,常常使人找不到解题的正确思路。如果用方程思想求解此类问题,思路可以清晰,步骤也可以明确,并形成一个通用的方法。

二、方程解题方法

用方程思路解决“牛吃草”问题的步骤可以概括为三步:

1、设定原有草的总量和单位时间草的变化量,一般设原有总量为1,单位时间变化量为X;

2、列出表格,分别表示牛的数量、时间总量、草的总量(原有总量+一定时间内变化的量)、每头牛单位时间吃草数量

3、根据每头牛单位时间吃草数量保持不变这一关系列方程求解X,从而可以求出任意时间的草的总量,也可以求出每头牛单位时间吃草数量。从而针对题目问题设未知数为Y进行求解。

下面结合几个例题进行分析:

例题1:一牧场上的青草每天都匀速生长。这片青草可供27头牛吃6周,或供23头牛吃9周。那么可供21头牛吃几周?

解:第一步:设牧场原有草量为1,每周新长草X;

第二步:列表格如下: 牛的数量272321 时间

69Y 草的总量

1+6*X1+9*X1+Y*X

根据每头牛单位时间吃草数量保持不变这一关系列方程求解X 有方程(1+6*X)/(27*6)=(1+9*X)/(23*9)

求出X 然后代到(1+9*X)/(23*9)=(1+Y*X)/21*Y 牛吃草还有多种出题方式,例如

题目演变之一(青草减少)

例题2:由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。那么,可供11头牛吃几天?

解:第一步,设牧场原有草量为1,每天减少草X;

第二步,列表如下:

牛的数量20 16 11 时间5 6Y 草的总量1-5X1-6X 1-YX

每头牛单位时间吃草数量(1-5X)/20*5(1-6X)/16*6(1-YX)/11Y

第三步:根据表格第四行彼此相等列出方程:

(1-5X)/20*5 =(1-6X)/16*6

(1)

(1-5X)/20*5 =(1-6X)/16*6

(1)

(1-5X)/20*5 =(1-YX)/11Y

(2)由(1)得到X=1/30,代入(2)得到Y=8(天)

题目演变之二(排水问题)

例题3:有一水池,池底有泉水不断涌出。要想把水池的水抽干,10台抽水机需抽 8时,8台抽水机需抽12时。如果用6台抽水机,那么需抽多少小时?

解:第一步:设水池原有水量为1,每小时泉水涌出X;

第二步:列表格如下:

抽水机数量 10 86 时间 8

【公务员必备】行测数学运算总结(不看后悔)

第一篇:【公务员必备】行测数学运算总结(不看后悔) 数学运算 一、数的整除特性 (1)被2整除 偶数 (2)被3...
点击下载
分享:
最新文档
热门文章
    确认删除?
    QQ
    • QQ点击这里给我发消息
    微信客服
    • 微信客服
    回到顶部